Logo

Orders of Infinity by G. H. Hardy

Large book cover: Orders of Infinity

Orders of Infinity
by

Publisher: Cambridge University Press
ISBN/ASIN: 1453609431
Number of pages: 101

Description:
The ideas of Du Bois-Reymond's 'Infinitarcalcul' are of great and growing importance in all branches of the theory of functions. The author attempted to bring the Infinitarcalcul up to date, stating explicitly and proving carefully a number of general theorems the truth of which Du Bois=Reymond seems to have tacitly assumed.

Home page url

Download or read it online for free here:
Download link
(820KB, PDF)

Download mirrors:
Mirror 1

Similar books

Book cover: Introduction to Mathematical AnalysisIntroduction to Mathematical Analysis
by - Portland State University Library
We provide students with a strong foundation in mathematical analysis. Students should be familiar with most of the concepts presented here after completing the calculus sequence. However, these concepts will be reinforced through rigorous proofs.
(4706 views)
Book cover: Real Analysis for Graduate Students: Measure and Integration TheoryReal Analysis for Graduate Students: Measure and Integration Theory
by - CreateSpace
Nearly every Ph.D. student in mathematics needs to take a preliminary or qualifying examination in real analysis. This book provides the necessary tools to pass such an examination. The author presents the material in as clear a fashion as possible.
(8415 views)
Book cover: Homeomorphisms in AnalysisHomeomorphisms in Analysis
by - American Mathematical Society
This book features the interplay of two main branches of mathematics: topology and real analysis. The text covers Lebesgue measurability, Baire classes of functions, differentiability, the Blumberg theorem, various theorems on Fourier series, etc.
(10270 views)
Book cover: Lectures on Lipschitz AnalysisLectures on Lipschitz Analysis
by
In these lectures, we concentrate on the theory of Lipschitz functions in Euclidean spaces. From the table of contents: Introduction; Extension; Differentiability; Sobolev spaces; Whitney flat forms; Locally standard Lipschitz structures.
(6536 views)