Logo

Lecture Notes on Seiberg-Witten Invariants

Large book cover: Lecture Notes on Seiberg-Witten Invariants

Lecture Notes on Seiberg-Witten Invariants
by

Publisher: Springer
ISBN/ASIN: 3540412212
ISBN-13: 9783540412212
Number of pages: 130

Description:
This book gives a streamlined introduction to the theory of Seiberg-Witten invariants suitable for second-year graduate students. These invariants can be used to prove that there are many compact topological four-manifolds which have more than one smooth structure, and that others have no smooth structure at all. This topic provides an excellent example of how global analysis techniques, which have been developed to study nonlinear partial differential equations, can be applied to the solution of interesting geometrical problems.

Home page url

Download or read it online for free here:
Download link
(550KB, PDF)

Similar books

Book cover: Manifolds and Differential FormsManifolds and Differential Forms
by - Cornell University
The text covers manifolds and differential forms for an audience of undergraduates who have taken a typical calculus sequence, including basic linear algebra and multivariable calculus up to the integral theorems of Green, Gauss and Stokes.
(7371 views)
Book cover: ManifoldsManifolds
by - King's College London
From the table of contents: Manifolds (Elementary Topology and Definitions); The Tangent Space; Maps Between Manifolds; Vector Fields; Tensors; Differential Forms; Connections, Curvature and Metrics; Riemannian Manifolds.
(4751 views)
Book cover: Noncommutative Localization in Algebra and TopologyNoncommutative Localization in Algebra and Topology
by - Cambridge University Press
Noncommutative localization is a technique for constructing new rings by inverting elements, matrices and more generally morphisms of modules. The applications to topology are via the noncommutative localizations of the fundamental group rings.
(4426 views)
Book cover: The Convenient Setting of Global AnalysisThe Convenient Setting of Global Analysis
by - American Mathematical Society
This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory.
(8272 views)