The Hauptvermutung Book: A Collection of Papers on the Topology of Manifolds
by A.A. Ranicki, et al,
Publisher: Springer 1996
ISBN/ASIN: 9048147352
ISBN-13: 9789048147359
Number of pages: 194
Description:
The Hauptvermutung is the conjecture that any two triangulations of a polyhedron are combinatorially equivalent. This conjecture was formulated at the turn of the century, and until its resolution was a central problem of topology. Initially, it was verified for low-dimensional polyhedra, and it might have been expected that further development of high-dimensional topology would lead to a verification in all dimensions.
Download or read it online for free here:
Download link
(740KB, PDF)
Similar books
Diffeomorphisms of Elliptic 3-Manifolds
by S. Hong, J. Kalliongis, D. McCullough, J. H. Rubinstein - arXiv
The elliptic 3-manifolds are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature. For any elliptic 3-manifold M, the inclusion from the isometry group of M to the diffeomorphism group of M is a homotopy equivalence.
(8911 views)
by S. Hong, J. Kalliongis, D. McCullough, J. H. Rubinstein - arXiv
The elliptic 3-manifolds are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature. For any elliptic 3-manifold M, the inclusion from the isometry group of M to the diffeomorphism group of M is a homotopy equivalence.
(8911 views)
Lectures on Polyhedral Topology
by John R. Stallings - Tata Institute of Fundamental Research
These notes contain: The elementary theory of finite polyhedra in real vector spaces; A theory of 'general position' (approximation of maps), based on 'non-degeneracy'. A theory of 'regular neighbourhoods' in arbitrary polyhedra; etc.
(9614 views)
by John R. Stallings - Tata Institute of Fundamental Research
These notes contain: The elementary theory of finite polyhedra in real vector spaces; A theory of 'general position' (approximation of maps), based on 'non-degeneracy'. A theory of 'regular neighbourhoods' in arbitrary polyhedra; etc.
(9614 views)
An Introduction to Algebraic Surgery
by Andrew Ranicki - arXiv
Browder-Novikov-Sullivan-Wall surgery theory investigates the homotopy types of manifolds, using a combination of algebra and topology. It is the aim of these notes to provide an introduction to the more algebraic aspects of the theory.
(11166 views)
by Andrew Ranicki - arXiv
Browder-Novikov-Sullivan-Wall surgery theory investigates the homotopy types of manifolds, using a combination of algebra and topology. It is the aim of these notes to provide an introduction to the more algebraic aspects of the theory.
(11166 views)
An Introduction to High Dimensional Knots
by Eiji Ogasa - arXiv
This is an introductory article on high dimensional knots for the beginners. Is there a nontrivial high dimensional knot? We first answer this question. We explain local moves on high dimensional knots and the projections of high dimensional knots.
(6892 views)
by Eiji Ogasa - arXiv
This is an introductory article on high dimensional knots for the beginners. Is there a nontrivial high dimensional knot? We first answer this question. We explain local moves on high dimensional knots and the projections of high dimensional knots.
(6892 views)