Logo

Lectures On Levi Convexity Of Complex Manifolds And Cohomology Vanishing Theorems

Small book cover: Lectures On Levi Convexity Of Complex Manifolds And Cohomology Vanishing Theorems

Lectures On Levi Convexity Of Complex Manifolds And Cohomology Vanishing Theorems
by

Publisher: Tata Institute Of Fundamental Research
ISBN/ASIN: B0006C27TO
Number of pages: 114

Description:
These are notes of lectures which the author gave at the Tata Institute of Fundamental Research in the Winter 1965. Topics: Vanishing theorems for hermitian manifolds; W-ellipticity on Riemannian manifolds; Local expressions for and the main inequality; Vanishing Theorems.

Download or read it online for free here:
Download link
(540KB, PDF)

Similar books

Book cover: Quantum Physics, Relativity, and Complex SpacetimeQuantum Physics, Relativity, and Complex Spacetime
by - University of Massachusetts at Lowell
A new synthesis of the principles of quantum mechanics and Relativity is proposed in the context of complex differential geometry. The positivity of the energy implies that wave functions and fields can be extended to complex spacetime.
(13423 views)
Book cover: Lectures on Complex Analytic ManifoldsLectures on Complex Analytic Manifolds
by - Tata Institute of Fundamental Research
Topics covered: Differentiable Manifolds; C maps, diffeomorphisms. Effect of a map; The Tensor Bundles; Existence and uniqueness of the exterior differentiation; Manifolds with boundary; Integration on chains; Some examples of currents; etc.
(9766 views)
Book cover: Dynamics in One Complex VariableDynamics in One Complex Variable
by - Princeton University Press
This text studies the dynamics of iterated holomorphic mappings from a Riemann surface to itself, concentrating on the case of rational maps of the Riemann sphere. The book introduces some key ideas in the field, and forms a basis for further study.
(14353 views)
Book cover: Complex ManifoldsComplex Manifolds
by - Stanford University
From the table of contents: Complex Manifolds; Almost Complex Structures; Differential Forms; Poincare Lemma; Sheaves and Cohomology; Several Complex Variables; Holomorphic Vector Bundles; Kaehler Manifolds; Hodge Theory; Lefschetz Theorems; etc.
(4490 views)