**Introduction to Evolution Equations in Geometry**

by Bianca Santoro

**Publisher**: arXiv 2012**Number of pages**: 91

**Description**:

The author aimed at providing a first introduction to the main general ideas on the study of the Ricci flow, as well as guiding the reader through the steps of Kaehler geometry for the understanding of the complex version of the Ricci flow.

Download or read it online for free here:

**Download link**

(550KB, PDF)

## Similar books

**Gauge Theory for Fiber Bundles**

by

**Peter W. Michor**-

**Universitaet Wien**

Gauge theory usually investigates the space of principal connections on a principal fiber bundle (P,p,M,G) and its orbit space under the action of the gauge group (called the moduli space), which is the group of all principal bundle automorphisms...

(

**4774**views)

**Principles of Differential Geometry**

by

**Taha Sochi**-

**viXra**

A collection of notes about differential geometry prepared as part of tutorials about topics and applications related to tensor calculus. They can be used as a reference for a first course on the subject or as part of a course on tensor calculus.

(

**1800**views)

**Manifolds: Current Research Areas**

by

**Paul Bracken (ed.)**-

**InTech**

Differential geometry is a very active field of research and has many applications to areas such as physics and gravity, for example. The papers in this book cover a number of subjects which will be of interest to workers in these areas.

(

**1437**views)

**Probability, Geometry and Integrable Systems**

by

**Mark Pinsky, Bjorn Birnir**-

**Cambridge University Press**

The three main themes of this book are probability theory, differential geometry, and the theory of integrable systems. The papers included here demonstrate a wide variety of techniques that have been developed to solve various mathematical problems.

(

**10261**views)