**Basic Data Analysis and More: A Guided Tour Using Python**

by O. Melchert

**Publisher**: arXiv 2012**Number of pages**: 62

**Description**:

In these lecture notes, a selection of frequently required statistical tools will be introduced and illustrated. They allow to post-process data that stem from, e.g., large-scale numerical simulations. From a point of view of data analysis, the concepts and techniques introduced here are of general interest and are, at best, employed by computational aid. Consequently, an exemplary implementation of the presented techniques using the Python programming language is provided.

Download or read it online for free here:

**Download link**

(910KB, PDF)

## Similar books

**Reversible Markov Chains and Random Walks on Graphs**

by

**David Aldous, James Allen Fill**-

**University of California, Berkeley**

From the table of contents: General Markov Chains; Reversible Markov Chains; Hitting and Convergence Time, and Flow Rate, Parameters for Reversible Markov Chains; Special Graphs and Trees; Cover Times; Symmetric Graphs and Chains; etc.

(

**8427**views)

**Introduction Probaility and Statistics**

by

**Muhammad El-Taha**-

**University of Southern Maine**

Topics: Data Analysis; Probability; Random Variables and Discrete Distributions; Continuous Probability Distributions; Sampling Distributions; Point and Interval Estimation; Large Sample Estimation; Large-Sample Tests of Hypothesis; etc.

(

**20484**views)

**Topics in Random Matrix Theory**

by

**Terence Tao**

This is a textbook for a graduate course on random matrix theory, inspired by recent developments in the subject. This text focuses on foundational topics in random matrix theory upon which the most recent work has been based.

(

**7768**views)

**Advanced Data Analysis from an Elementary Point of View**

by

**Cosma Rohilla Shalizi**-

**Cambridge University Press**

This is a draft textbook on data analysis methods, intended for a one-semester course for advance undergraduate students who have already taken classes in probability, mathematical statistics, and linear regression. It began as the lecture notes.

(

**3395**views)