Logo

An Introduction to Group Theory: Applications to Mathematical Music Theory

Small book cover: An Introduction to Group Theory: Applications to Mathematical Music Theory

An Introduction to Group Theory: Applications to Mathematical Music Theory
by

Publisher: BookBoon
ISBN-13: 9788740303247
Number of pages: 165

Description:
In this text, a modern presentation of the fundamental notions of Group Theory is chosen, where the language of commutative diagrams and universal properties, so necessary in Modern Mathematics, in Physics and Computer Science, among other disciplines, is introduced.

Home page url

Download or read it online for free here:
Download link
(3.9MB, PDF)

Similar books

Book cover: Groups as GraphsGroups as Graphs
by - CuArt
In this book, for the first time, the authors represented every finite group in the form of a graph. This study is significant because properties of groups can be immediately obtained by looking at the graphs of the groups.
(12429 views)
Book cover: Finite Rank Torsion Free Modules Over Dedekind DomainsFinite Rank Torsion Free Modules Over Dedekind Domains
by - University of Hawaii
Contents: Modules Over Commutative Rings; Fundamentals; Rank-one Modules and Types; Quasi-Homomorphisms; The t-Socle and t-Radical; Butler Modules; Splitting Rings and Splitting Fields; Torsion Free Rings; Quotient Divisible Modules; etc.
(9340 views)
Book cover: Notes on Categories and GroupoidsNotes on Categories and Groupoids
by - Van Nostrand Reinhold
A self-contained account of the elementary theory of groupoids and some of its uses in group theory and topology. Category theory appears as a secondary topic whenever it is relevant to the main issue, and its treatment is by no means systematic.
(15089 views)
Book cover: Lectures on Algebraic GroupsLectures on Algebraic Groups
by - University of Oregon
Contents: General Algebra; Commutative Algebra; Affine and Projective Algebraic Sets; Varieties; Morphisms; Tangent spaces; Complete Varieties; Basic Concepts; Lie algebra of an algebraic group; Quotients; Semisimple and unipotent elements; etc.
(12666 views)