**An Inquiry-Based Introduction to Proofs**

by Jim Hefferon

**Publisher**: Saint Michael's College 2013**Number of pages**: 23

**Description**:

Introduction to Proofs is a Free undergraduate text. It is inquiry-based, sometimes called the Moore method or the discovery method. The text consists of a sequence of exercises, statements for students to prove, along with a few definitions and remarks. The instructor does not lecture but instead lightly guides as the class works through the material together.

Download or read it online for free here:

**Download link**

(200KB, PDF)

## Similar books

**Proofs in Mathematics**

by

**Alexander Bogomolny**-

**Interactive Mathematics Miscellany and Puzzles**

I'll distinguish between two broad categories. The first is characterized by simplicity. In the second group the proofs will be selected mainly for their charm. Most of the proofs in this book should be accessible to a middle grade school student.

(

**9304**views)

**A Gentle Introduction to the Art of Mathematics**

by

**Joseph Fields**-

**Southern Connecticut State University**

The point of this book is to help you with the transition from doing math at an elementary level (concerned mostly with solving problems) to doing math at an advanced level (which is much more concerned with axiomatic systems and proving statements).

(

**12371**views)

**Fundamental Concepts of Mathematics**

by

**Farshid Hajir**-

**University of Massachusetts**

Problem Solving, Inductive vs. Deductive Reasoning, An introduction to Proofs; Logic and Sets; Sets and Maps; Counting Principles and Finite Sets; Relations and Partitions; Induction; Number Theory; Counting and Uncountability; Complex Numbers.

(

**12035**views)

**An Introduction to Mathematical Reasoning**

by

**Peter J. Eccles**-

**Cambridge University Press**

This book introduces basic ideas of mathematical proof to students embarking on university mathematics. The emphasis is on constructing proofs and writing clear mathematics. This is achieved by exploring set theory, combinatorics and number theory.

(

**6277**views)