Logo

An Inquiry-Based Introduction to Proofs

Small book cover: An Inquiry-Based Introduction to Proofs

An Inquiry-Based Introduction to Proofs
by

Publisher: Saint Michael's College
Number of pages: 23

Description:
Introduction to Proofs is a Free undergraduate text. It is inquiry-based, sometimes called the Moore method or the discovery method. The text consists of a sequence of exercises, statements for students to prove, along with a few definitions and remarks. The instructor does not lecture but instead lightly guides as the class works through the material together.

Home page url

Download or read it online for free here:
Download link
(200KB, PDF)

Similar books

Book cover: An Introduction to Higher MathematicsAn Introduction to Higher Mathematics
by - Whitman College
Contents: Logic (Logical Operations, De Morgan's Laws, Logic and Sets); Proofs (Direct Proofs, Existence proofs, Mathematical Induction); Number Theory (The Euclidean Algorithm); Functions (Injections and Surjections, Cardinality and Countability).
(10881 views)
Book cover: Proofs in MathematicsProofs in Mathematics
by - Interactive Mathematics Miscellany and Puzzles
I'll distinguish between two broad categories. The first is characterized by simplicity. In the second group the proofs will be selected mainly for their charm. Most of the proofs in this book should be accessible to a middle grade school student.
(9037 views)
Book cover: An Introduction to Mathematical ReasoningAn Introduction to Mathematical Reasoning
by - Cambridge University Press
This book introduces basic ideas of mathematical proof to students embarking on university mathematics. The emphasis is on constructing proofs and writing clear mathematics. This is achieved by exploring set theory, combinatorics and number theory.
(5744 views)
Book cover: Fundamental Concepts of MathematicsFundamental Concepts of Mathematics
by - University of Massachusetts
Problem Solving, Inductive vs. Deductive Reasoning, An introduction to Proofs; Logic and Sets; Sets and Maps; Counting Principles and Finite Sets; Relations and Partitions; Induction; Number Theory; Counting and Uncountability; Complex Numbers.
(11640 views)