Logo

An Inquiry-Based Introduction to Proofs

Small book cover: An Inquiry-Based Introduction to Proofs

An Inquiry-Based Introduction to Proofs
by

Publisher: Saint Michael's College
Number of pages: 23

Description:
Introduction to Proofs is a Free undergraduate text. It is inquiry-based, sometimes called the Moore method or the discovery method. The text consists of a sequence of exercises, statements for students to prove, along with a few definitions and remarks. The instructor does not lecture but instead lightly guides as the class works through the material together.

Home page url

Download or read it online for free here:
Download link
(200KB, PDF)

Similar books

Book cover: A Introduction to Proofs and the Mathematical VernacularA Introduction to Proofs and the Mathematical Vernacular
by - Virginia Tech
The book helps students make the transition from freshman-sophomore calculus to more proof-oriented upper-level mathematics courses. Another goal is to train students to read more involved proofs they may encounter in textbooks and journal articles.
(22737 views)
Book cover: Book of ProofBook of Proof
by - Virginia Commonwealth University
This textbook is an introduction to the standard methods of proving mathematical theorems. It is written for an audience of mathematics majors at Virginia Commonwealth University, and is intended to prepare the students for more advanced courses.
(40093 views)
Book cover: How To Write ProofsHow To Write Proofs
by - California State University, Fresno
Proofs are the heart of mathematics. What is the secret? The short answer is: there is no secret, no mystery, no magic. All that is needed is some common sense and a basic understanding of a few trusted and easy to understand techniques.
(13690 views)
Book cover: A Gentle Introduction to the Art of MathematicsA Gentle Introduction to the Art of Mathematics
by - Southern Connecticut State University
The point of this book is to help you with the transition from doing math at an elementary level (concerned mostly with solving problems) to doing math at an advanced level (which is much more concerned with axiomatic systems and proving statements).
(18393 views)