Logo

An Inquiry-Based Introduction to Proofs

Small book cover: An Inquiry-Based Introduction to Proofs

An Inquiry-Based Introduction to Proofs
by

Publisher: Saint Michael's College
Number of pages: 23

Description:
Introduction to Proofs is a Free undergraduate text. It is inquiry-based, sometimes called the Moore method or the discovery method. The text consists of a sequence of exercises, statements for students to prove, along with a few definitions and remarks. The instructor does not lecture but instead lightly guides as the class works through the material together.

Home page url

Download or read it online for free here:
Download link
(200KB, PDF)

Similar books

Book cover: Proofs in MathematicsProofs in Mathematics
by - Interactive Mathematics Miscellany and Puzzles
I'll distinguish between two broad categories. The first is characterized by simplicity. In the second group the proofs will be selected mainly for their charm. Most of the proofs in this book should be accessible to a middle grade school student.
(9304 views)
Book cover: A Gentle Introduction to the Art of MathematicsA Gentle Introduction to the Art of Mathematics
by - Southern Connecticut State University
The point of this book is to help you with the transition from doing math at an elementary level (concerned mostly with solving problems) to doing math at an advanced level (which is much more concerned with axiomatic systems and proving statements).
(12371 views)
Book cover: Fundamental Concepts of MathematicsFundamental Concepts of Mathematics
by - University of Massachusetts
Problem Solving, Inductive vs. Deductive Reasoning, An introduction to Proofs; Logic and Sets; Sets and Maps; Counting Principles and Finite Sets; Relations and Partitions; Induction; Number Theory; Counting and Uncountability; Complex Numbers.
(12035 views)
Book cover: An Introduction to Mathematical ReasoningAn Introduction to Mathematical Reasoning
by - Cambridge University Press
This book introduces basic ideas of mathematical proof to students embarking on university mathematics. The emphasis is on constructing proofs and writing clear mathematics. This is achieved by exploring set theory, combinatorics and number theory.
(6277 views)