**Introductory Treatise On Lie's Theory Of Finite Continuous Transformation Groups**

by John Edward Campbell

**Publisher**: Oxford Clarendon Press 1903**ISBN/ASIN**: 1406720259**Number of pages**: 460

**Description**:

In this treatise an attempt is made to give, in as elementary a form as possible, the main outlines of Lie's theory of Continuous Groups. Even those familiar with the theory of Continuous Groups may find something new in the form in which the theory is here presented.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Notes on Differential Geometry and Lie Groups**

by

**Jean Gallier**-

**University of Pennsylvania**

Contents: Introduction to Manifolds and Lie Groups; Review of Groups and Group Actions; Manifolds; Construction of Manifolds From Gluing Data; Lie Groups, Lie Algebra, Exponential Map; The Derivative of exp and Dynkin's Formula; etc.

(

**6305**views)

**Introduction to Lie Groups, Adjoint Action and Some Generalizations**

by

**Marcos M. Alexandrino, Renato G. Bettiol**-

**arXiv**

These lecture notes provide a concise introduction to Lie groups, Lie algebras, and isometric and adjoint actions, aiming at advanced undergraduate and graduate students. A special focus is given to maximal tori and roots of compact Lie groups.

(

**5881**views)

**Continuous Groups Of Transformations**

by

**Luther Pfahler Eisenhart**-

**Princeton University Press**

'Continuous Groups Of Transformations' sets forth the general theory of Lie and his contemporaries and the results of recent investigations with the aid of the methods of the tensor calculus and concepts of the new differential geometry.

(

**1695**views)

**Roots of a Compact Lie Group**

by

**Kristopher Tapp**-

**arXiv**

This expository article introduces the topic of roots in a compact Lie group. Compared to the many other treatments of this standard topic, I intended for mine to be relatively elementary, example-driven, and free of unnecessary abstractions.

(

**3144**views)