Logo

Knot Invariants and Higher Representation Theory

Small book cover: Knot Invariants and Higher Representation Theory

Knot Invariants and Higher Representation Theory
by

Publisher: arXiv
Number of pages: 87

Description:
We construct knot invariants categorifying the quantum knot variants for all representations of quantum groups. We show that these invariants coincide with previous invariants defined by Khovanov for sl_2 and sl_3 and by Mazorchuk-Stroppel and Sussan for sl_n.

Home page url

Download or read it online for free here:
Download link
(1MB, PDF)

Similar books

Book cover: Lower K- and L-theoryLower K- and L-theory
by - Cambridge University Press
This is the first treatment of the applications of the lower K- and L-groups to the topology of manifolds such as Euclidean spaces, via Whitehead torsion and the Wall finiteness and surgery obstructions. Only elementary constructions are used.
(5248 views)
Book cover: The Hauptvermutung Book: A Collection of Papers on the Topology of ManifoldsThe Hauptvermutung Book: A Collection of Papers on the Topology of Manifolds
by - Springer
The Hauptvermutung is the conjecture that any two triangulations of a polyhedron are combinatorially equivalent. This conjecture was formulated at the turn of the century, and until its resolution was a central problem of topology.
(5102 views)
Book cover: An Introduction to Algebraic SurgeryAn Introduction to Algebraic Surgery
by - arXiv
Browder-Novikov-Sullivan-Wall surgery theory investigates the homotopy types of manifolds, using a combination of algebra and topology. It is the aim of these notes to provide an introduction to the more algebraic aspects of the theory.
(5828 views)
Book cover: Algebraic and Geometric SurgeryAlgebraic and Geometric Surgery
by - Oxford University Press
Surgery theory is the standard method for the classification of high-dimensional manifolds, where high means 5 or more. This book aims to be an entry point to surgery theory for a reader who already has some background in topology.
(4922 views)