Logo

Foundations of Tensor Analysis for Students of Physics and Engineering With an Introduction to the Theory of Relativity

Small book cover: Foundations of Tensor Analysis for Students of Physics and Engineering With an Introduction to the Theory of Relativity

Foundations of Tensor Analysis for Students of Physics and Engineering With an Introduction to the Theory of Relativity
by

Publisher: Glenn Research Center
Number of pages: 92

Description:
Tensor analysis is useful because of its great generality, computational power, and compact, easy-to-use notation. This monograph is intended to provide a conceptual foundation for students of physics and engineering who wish to pursue tensor analysis as part of their advanced studies in applied mathematics.

Download or read it online for free here:
Download link
(1MB, PDF)

Similar books

Book cover: Spacetime and FieldsSpacetime and Fields
by - arXiv
A self-contained introduction to the classical theory of spacetime and fields. Topics: Spacetime (tensors, affine connection, curvature, metric, Lorentz group, spinors), Fields (principle of least action, action for gravitational field, matter, etc)
(9982 views)
Book cover: General Relativity NotesGeneral Relativity Notes
by - MIT
Working with GR requires some understanding of differential geometry. In this text we will develop the essential mathematics needed to describe physics in curved spacetime. These notes assume familiarity with special relativity.
(11734 views)
Book cover: General RelativityGeneral Relativity
by - lightandmatter.com
This is an undergraduate textbook on general relativity. It is well adapted for self-study, and answers are given in the back of the book for almost all the problems. The ratio of conceptual to mathematical problems is higher than in most books.
(12596 views)
Book cover: Lecture Notes on General RelativityLecture Notes on General Relativity
by - Universitaet Bern
The first half of the book is dedicated to developing the machinery of tensor calculus and Riemannian geometry required to describe physics in a curved space time. We will then turn to various applications of General Relativity.
(12921 views)