
An Elementary Introduction to Groups and Representations
by Brian C. Hall
Publisher: arXiv 2000
Number of pages: 128
Description:
These notes give an elementary introduction to Lie groups, Lie algebras, and their representations. Designed to be accessible to graduate students in mathematics or physics, they have a minimum of prerequisites. Topics include definitions and examples of Lie groups and Lie algebras, the relationship between Lie groups and Lie algebras via the exponential mapping, the basics of representations theory, the Baker-Campbell-Hausdorff formula, a detailed study of the representations of SU(3), and a brief survey of the representation theory of general semisimple groups.
Download or read it online for free here:
Download link
(950KB, PDF)
Similar books
Congruence Lattices of Finite Algebrasby William DeMeo - arXiv
We review a number of methods for finding a finite algebra with a given congruence lattice, including searching for intervals in subgroup lattices. We also consider methods for proving that algebras with a given congruence lattice exist...
(10895 views)
Group Characters, Symmetric Functions, and the Hecke Algebraby David M. Goldschmidt - American Mathematical Society
The book covers a set of interrelated topics, presenting a self-contained exposition of the algebra behind the Jones polynomial along with various excursions into related areas. Directed at graduate students and mathematicians.
(13347 views)
An Elementary Introduction to Group Theoryby M. E. Charkani - AMS
The theory of groups is a branch of mathematics in which we study the concept of binaryoperations. Group theory has many applications in physics and chemistry, and is potentially applicable in any situation characterized by symmetry.
(9062 views)
Group Theory: Birdtracks, Lie's, and Exceptional Groupsby Predrag Cvitanovic - Princeton University Press
A book on the theory of Lie groups for researchers and graduate students in theoretical physics and mathematics. It answers what Lie groups preserve trilinear, quadrilinear, and higher order invariants. Written in a lively and personable style.
(17629 views)