Logo

An Elementary Introduction to Groups and Representations

Small book cover: An Elementary Introduction to Groups and Representations

An Elementary Introduction to Groups and Representations
by

Publisher: arXiv
Number of pages: 128

Description:
These notes give an elementary introduction to Lie groups, Lie algebras, and their representations. Designed to be accessible to graduate students in mathematics or physics, they have a minimum of prerequisites. Topics include definitions and examples of Lie groups and Lie algebras, the relationship between Lie groups and Lie algebras via the exponential mapping, the basics of representations theory, the Baker-Campbell-Hausdorff formula, a detailed study of the representations of SU(3), and a brief survey of the representation theory of general semisimple groups.

Home page url

Download or read it online for free here:
Download link
(950KB, PDF)

Similar books

Book cover: Finite Group SchemesFinite Group Schemes
by - ETH Zurich
The aim of the lecture course is the classification of finite commutative group schemes over a perfect field of characteristic p, using the classical approach by contravariant Dieudonne theory. The theory is developed from scratch.
(10651 views)
Book cover: Why are Braids Orderable?Why are Braids Orderable?
by
This book is an account of several quite different approaches to Artin's braid groups, involving self-distributive algebra, uniform finite trees, combinatorial group theory, mapping class groups, laminations, and hyperbolic geometry.
(13333 views)
Book cover: Introduction to Lie Groups and Lie AlgebrasIntroduction to Lie Groups and Lie Algebras
by - SUNY at Stony Brook
The book covers the basic contemporary theory of Lie groups and Lie algebras. This classic graduate text focuses on the study of semisimple Lie algebras, developing the necessary theory along the way. Written in an informal style.
(15010 views)
Book cover: Lectures on Algebraic GroupsLectures on Algebraic Groups
by - University of Oregon
Contents: General Algebra; Commutative Algebra; Affine and Projective Algebraic Sets; Varieties; Morphisms; Tangent spaces; Complete Varieties; Basic Concepts; Lie algebra of an algebraic group; Quotients; Semisimple and unipotent elements; etc.
(13742 views)