Bayesian Field Theory by J. C. Lemm

Large book cover: Bayesian Field Theory

Bayesian Field Theory

Publisher: arXiv.org
Number of pages: 200

Bayesian field theory denotes a nonparametric Bayesian approach for learning functions from observational data. Based on the principles of Bayesian statistics, a particular Bayesian field theory is defined by combining two models: a likelihood model, providing a probabilistic description of the measurement process, and a prior model, providing the information necessary to generalize from training to non-training data.

Home page url

Download or read it online for free here:
Download link
(1.7MB, PDF)

Similar books

Book cover: Inverse Problem Theory and Methods for Model Parameter EstimationInverse Problem Theory and Methods for Model Parameter Estimation
by - SIAM
The first part deals with discrete inverse problems with a finite number of parameters, while the second part deals with general inverse problems. The book for scientists and applied mathematicians facing the interpretation of experimental data.
Book cover: Introduction to Probability Theory and Statistics for LinguisticsIntroduction to Probability Theory and Statistics for Linguistics
by - UCLA
Contents: Basic Probability Theory (Conditional Probability, Random Variables, Limit Theorems); Elements of Statistics (Estimators, Tests, Distributions, Correlation and Covariance, Linear Regression, Markov Chains); Probabilistic Linguistics.
Book cover: Markov Chains and Stochastic StabilityMarkov Chains and Stochastic Stability
by - Springer
The book on the theory of general state space Markov chains, and its application to time series analysis, operations research and systems and control theory. An advanced graduate text and a monograph treating the stability of Markov chains.
Book cover: CK-12 Basic Probability and Statistics: A Short CourseCK-12 Basic Probability and Statistics: A Short Course
by - CK-12.org
CK-12 Foundation's Basic Probability and Statistics– A Short Course is an introduction to theoretical probability and data organization. Students learn about events, conditions, random variables, and graphs and tables that allow them to manage data.