Bayesian Field Theory
by J. C. Lemm
Publisher: arXiv.org 2000
Number of pages: 200
Description:
Bayesian field theory denotes a nonparametric Bayesian approach for learning functions from observational data. Based on the principles of Bayesian statistics, a particular Bayesian field theory is defined by combining two models: a likelihood model, providing a probabilistic description of the measurement process, and a prior model, providing the information necessary to generalize from training to non-training data.
Download or read it online for free here:
Download link
(1.7MB, PDF)
Similar books

by Cosma Rohilla Shalizi - Cambridge University Press
This is a draft textbook on data analysis methods, intended for a one-semester course for advance undergraduate students who have already taken classes in probability, mathematical statistics, and linear regression. It began as the lecture notes.
(7193 views)

by David Aldous, James Allen Fill - University of California, Berkeley
From the table of contents: General Markov Chains; Reversible Markov Chains; Hitting and Convergence Time, and Flow Rate, Parameters for Reversible Markov Chains; Special Graphs and Trees; Cover Times; Symmetric Graphs and Chains; etc.
(11286 views)

by Noel Corngold - Caltech
The book introduces students to the ideas and attitudes that underlie the statistical modeling of physical, chemical, biological systems. The text contains material the author have tried to convey to an audience composed mostly of graduate students.
(9645 views)

by Marco Taboga - statlect.com
This e-book is organized as a website that provides access to a series of lectures on fundamentals of probability, statistics and econometrics, as well as to a number of exercises on the same topics. The level is intermediate.
(11004 views)