**Bayesian Field Theory**

by J. C. Lemm

**Publisher**: arXiv.org 2000**Number of pages**: 200

**Description**:

Bayesian field theory denotes a nonparametric Bayesian approach for learning functions from observational data. Based on the principles of Bayesian statistics, a particular Bayesian field theory is defined by combining two models: a likelihood model, providing a probabilistic description of the measurement process, and a prior model, providing the information necessary to generalize from training to non-training data.

Download or read it online for free here:

**Download link**

(1.7MB, PDF)

## Similar books

**Principles of Data Analysis**

by

**Cappella Archive**-

**Prasenjit Saha**

This is a short book about the principles of data analysis. The emphasis is on why things are done rather than on exactly how to do them. If you already know something about the subject, then working through this book will deepen your understanding.

(

**9864**views)

**Reversible Markov Chains and Random Walks on Graphs**

by

**David Aldous, James Allen Fill**-

**University of California, Berkeley**

From the table of contents: General Markov Chains; Reversible Markov Chains; Hitting and Convergence Time, and Flow Rate, Parameters for Reversible Markov Chains; Special Graphs and Trees; Cover Times; Symmetric Graphs and Chains; etc.

(

**9839**views)

**Probability and Mathematical Statistics**

by

**Prasanna Sahoo**-

**University of Louisville**

This book is an introduction to probability and mathematical statistics intended for students already having some elementary mathematical background. It is intended for a one-year junior or senior level undergraduate or beginning graduate course.

(

**4594**views)

**Convergence of Stochastic Processes**

by

**D. Pollard**-

**Springer**

Selected parts of empirical process theory, with applications to mathematical statistics. The book describes the combinatorial ideas needed to prove maximal inequalities for empirical processes indexed by classes of sets or classes of functions.

(

**10982**views)