Logo

Bayesian Field Theory by J. C. Lemm

Large book cover: Bayesian Field Theory

Bayesian Field Theory
by

Publisher: arXiv.org
Number of pages: 200

Description:
Bayesian field theory denotes a nonparametric Bayesian approach for learning functions from observational data. Based on the principles of Bayesian statistics, a particular Bayesian field theory is defined by combining two models: a likelihood model, providing a probabilistic description of the measurement process, and a prior model, providing the information necessary to generalize from training to non-training data.

Home page url

Download or read it online for free here:
Download link
(1.7MB, PDF)

Similar books

Book cover: Think Stats: Probability and Statistics for ProgrammersThink Stats: Probability and Statistics for Programmers
by - Green Tea Press
Think Stats is an introduction to Probability and Statistics for Python programmers. This new book emphasizes simple techniques you can use to explore real data sets and answer interesting statistical questions. Basic skills in Python are assumed.
(12295 views)
Book cover: Lectures on Probability, Statistics and EconometricsLectures on Probability, Statistics and Econometrics
by - statlect.com
This e-book is organized as a website that provides access to a series of lectures on fundamentals of probability, statistics and econometrics, as well as to a number of exercises on the same topics. The level is intermediate.
(8704 views)
Book cover: Correlation and CausalityCorrelation and Causality
by - John Wiley & Sons Inc
This text is a general introduction to the topic of structural analysis. It presumes no previous acquaintance with causal analysis. It is general because it covers all the standard, as well as a few nonstandard, statistical procedures.
(10938 views)
Book cover: Introduction to Probability Theory and Statistics for LinguisticsIntroduction to Probability Theory and Statistics for Linguistics
by - UCLA
Contents: Basic Probability Theory (Conditional Probability, Random Variables, Limit Theorems); Elements of Statistics (Estimators, Tests, Distributions, Correlation and Covariance, Linear Regression, Markov Chains); Probabilistic Linguistics.
(7795 views)