**Machine Learning: A Probabilistic Perspective**

by Kevin Patrick Murphy

**Publisher**: The MIT Press 2012**ISBN-13**: 9780262018029**Number of pages**: 1098

**Description**:

A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms.

Download or read it online for free here:

**Download link**

(46MB, PDF)

## Similar books

**Reinforcement Learning: An Introduction**

by

**Richard S. Sutton, Andrew G. Barto**-

**The MIT Press**

The book provides a clear and simple account of the key ideas and algorithms of reinforcement learning. It covers the history and the most recent developments and applications. The only necessary mathematical background are concepts of probability.

(

**24185**views)

**Reinforcement Learning and Optimal Control**

by

**Dimitri P. Bertsekas**-

**Athena Scientific**

The book considers large and challenging multistage decision problems, which can be solved by dynamic programming and optimal control, but their exact solution is computationally intractable. We discuss solution methods that rely on approximations.

(

**6082**views)

**Introduction to Machine Learning for the Sciences**

by

**Titus Neupert, et al.**-

**arXiv.org**

This is an introductory machine learning course specifically developed with STEM students in mind, written by the theoretical Condensed Matter Theory group at the University of Zurich. We discuss supervised, unsupervised, and reinforcement learning.

(

**1053**views)

**Foundations of Machine Learning**

by

**M. Mohri, A. Rostamizadeh, A. Talwalkar**-

**The MIT Press**

This is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools.

(

**3867**views)