Gaussian Processes for Machine Learning
by Carl E. Rasmussen, Christopher K. I. Williams
Publisher: The MIT Press 2005
ISBN/ASIN: 026218253X
ISBN-13: 9780262182539
Number of pages: 266
Description:
Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others.
Download or read it online for free here:
Download link
(multiple PDF files)
Similar books
Statistical Foundations of Machine Learningby Gianluca Bontempi, Souhaib Ben Taieb
This handbook aims to present the statistical foundations of machine learning intended as the discipline which deals with the automatic design of models from data. This manuscript aims to find a good balance between theory and practice.
(10762 views)
Introduction To Machine Learningby Nils J Nilsson
This book concentrates on the important ideas in machine learning, to give the reader sufficient preparation to make the extensive literature on machine learning accessible. The author surveys the important topics in machine learning circa 1996.
(32385 views)
Introduction to Machine Learningby Alex Smola, S.V.N. Vishwanathan - Cambridge University Press
Over the past two decades Machine Learning has become one of the mainstays of information technology and a rather central part of our life. Smart data analysis will become even more pervasive as a necessary ingredient for technological progress.
(11723 views)
An Introductory Study on Time Series Modeling and Forecastingby Ratnadip Adhikari, R. K. Agrawal - arXiv
This work presents a concise description of some popular time series forecasting models used in practice, with their features. We describe three important classes of time series models, viz. the stochastic, neural networks and SVM based models.
(13766 views)