**Gaussian Processes for Machine Learning**

by Carl E. Rasmussen, Christopher K. I. Williams

**Publisher**: The MIT Press 2005**ISBN/ASIN**: 026218253X**ISBN-13**: 9780262182539**Number of pages**: 266

**Description**:

Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Machine Learning**

by

**Abdelhamid Mellouk, Abdennacer Chebira**-

**InTech**

Neural machine learning approaches, Hamiltonian neural networks, similarity discriminant analysis, machine learning methods for spoken dialogue simulation and optimization, linear subspace learning for facial expression analysis, and more.

(

**10496**views)

**Reinforcement Learning: An Introduction**

by

**Richard S. Sutton, Andrew G. Barto**-

**The MIT Press**

The book provides a clear and simple account of the key ideas and algorithms of reinforcement learning. It covers the history and the most recent developments and applications. The only necessary mathematical background are concepts of probability.

(

**17917**views)

**Machine Learning, Neural and Statistical Classification**

by

**D. Michie, D. J. Spiegelhalter**-

**Ellis Horwood**

The book provides a review of different approaches to classification, compares their performance on challenging data-sets, and draws conclusions on their applicability to realistic industrial problems. A wide variety of approaches has been taken.

(

**18685**views)

**A Survey of Statistical Network Models**

by

**A. Goldenberg, A.X. Zheng, S.E. Fienberg, E.M. Airoldi**-

**arXiv**

We begin with the historical development of statistical network modeling and then we introduce some examples in the network literature. Our subsequent discussion focuses on prominent static and dynamic network models and their interconnections.

(

**3275**views)