Logo

Lecture Notes on Computational Complexity

Lecture Notes on Computational Complexity
by


Number of pages: 171

Description:
These are notes from a graduate courses on Computational Complexity offered at the University of California at Berkeley. The first 15 lectures cover fundamental material. The remaining lectures cover more advanced material - there are lectures on Hastad's optimal inapproximability results, lower bounds for parity in bounded depth-circuits, lower bounds in proof-complexity, and pseudorandom generators and extractors.

Home page url

Download or read it online for free here:
Download link
(0.9MB, PDF)

Similar books

Book cover: Think Complexity: Complexity Science and Computational ModelingThink Complexity: Complexity Science and Computational Modeling
by - Green Tea Press
This book is about complexity science, data structures and algorithms, intermediate programming in Python, and the philosophy of science. The book focuses on discrete models, which include graphs, cellular automata, and agent-based models.
(4525 views)
Book cover: Complexity Theory: A Modern ApproachComplexity Theory: A Modern Approach
by - Cambridge University Press
The book provides an introduction to basic complexity classes, lower bounds on resources required to solve tasks on concrete models such as decision trees or circuits, derandomization and pseudorandomness, proof complexity, quantum computing, etc.
(11299 views)
Book cover: P, NP, and NP-Completeness: The Basics of Complexity TheoryP, NP, and NP-Completeness: The Basics of Complexity Theory
by - Cambridge University Press
The main focus of the current book is on the P-vs-NP Question and the theory of NP-completeness. Additional topics that are covered include the treatment of the general notion of a reduction between computational problems.
(4318 views)
Book cover: Around Kolmogorov Complexity: Basic Notions and ResultsAround Kolmogorov Complexity: Basic Notions and Results
by - arXiv.org
Algorithmic information theory studies description complexity and randomness. This text covers the basic notions of algorithmic information theory: Kolmogorov complexity, Solomonoff universal a priori probability, effective Hausdorff dimension, etc.
(722 views)