Logo

Class Field Theory by J. S. Milne

Small book cover: Class Field Theory

Class Field Theory
by


Number of pages: 287

Description:
Class field theory describes the abelian extensions of a local or global field in terms of the arithmetic of the field itself. These notes contain an exposition of abelian class field theory using the algebraic/cohomological approach of Chevalley and Artin and Tate.

Home page url

Download or read it online for free here:
Download link
(1.7MB, PDF)

Similar books

Book cover: Lectures on Field Theory and Ramification TheoryLectures on Field Theory and Ramification Theory
by - Indian Institute of Technology, Bombay
These are notes of a series of lectures, aimed at covering the essentials of Field Theory and Ramification Theory as may be needed for local and global class field theory. Included are the two sections on cyclic extensions and abelian extensions.
(6125 views)
Book cover: Generic Polynomials: Constructive Aspects of the Inverse Galois ProblemGeneric Polynomials: Constructive Aspects of the Inverse Galois Problem
by - Cambridge University Press
A clearly written book, which uses exclusively algebraic language (and no cohomology), and which will be useful for every algebraist or number theorist. It is easily accessible and suitable also for first-year graduate students.
(11048 views)
Book cover: Lectures On Galois Cohomology of Classical GroupsLectures On Galois Cohomology of Classical Groups
by - Tata Institute of Fundamental Research
The main result is the Hasse principle for the one-dimensional Galois cohomology of simply connected classical groups over number fields. For most groups, this result is closely related to other types of Hasse principle.
(5803 views)
Book cover: Lectures on the Algebraic Theory of FieldsLectures on the Algebraic Theory of Fields
by - Tata Institute of Fundamental Research
These lecture notes on Field theory are aimed at providing the beginner with an introduction to algebraic extensions, algebraic function fields, formally real fields and valuated fields. We assume a familiarity with group theory and vector spaces.
(6951 views)