Logo

Class Field Theory by J. S. Milne

Small book cover: Class Field Theory

Class Field Theory
by


Number of pages: 287

Description:
Class field theory describes the abelian extensions of a local or global field in terms of the arithmetic of the field itself. These notes contain an exposition of abelian class field theory using the algebraic/cohomological approach of Chevalley and Artin and Tate.

Home page url

Download or read it online for free here:
Download link
(1.7MB, PDF)

Similar books

Book cover: The Elements of the Theory of Algebraic NumbersThe Elements of the Theory of Algebraic Numbers
by - The Macmillan company
It has been my endeavor in this book to lead by easy stages a reader, entirely unacquainted with the subject, to an appreciation of some of the fundamental conceptions in the general theory of algebraic numbers. Many numerical examples are given.
(8547 views)
Book cover: Galois Theory: Lectures Delivered at the University of Notre DameGalois Theory: Lectures Delivered at the University of Notre Dame
by - University of Notre Dame
The book deals with linear algebra, including fields, vector spaces, homogeneous linear equations, and determinants, extension fields, polynomials, algebraic elements, splitting fields, group characters, normal extensions, roots of unity, and more.
(4623 views)
Book cover: Lectures On Galois Cohomology of Classical GroupsLectures On Galois Cohomology of Classical Groups
by - Tata Institute of Fundamental Research
The main result is the Hasse principle for the one-dimensional Galois cohomology of simply connected classical groups over number fields. For most groups, this result is closely related to other types of Hasse principle.
(8704 views)
Book cover: Lectures on Field Theory and Ramification TheoryLectures on Field Theory and Ramification Theory
by - Indian Institute of Technology, Bombay
These are notes of a series of lectures, aimed at covering the essentials of Field Theory and Ramification Theory as may be needed for local and global class field theory. Included are the two sections on cyclic extensions and abelian extensions.
(9230 views)