**Differential Geometry**

by Balazs Csikos

**Publisher**: Eötvös Loránd University 2010**Number of pages**: 123

**Description**:

Contents: Basic Structures on Rn, Length of Curves; Curvatures of a Curve; Plane Curves; 3D Curves; Hypersurfaces; Surfaces in the 3-dimensional space; The fundamental equations of hypersurface theory; Topological and Differentiable Manifolds; The Tangent Bundle; The Lie Algebra of Vector Fields; Differentiation of Vector Fields; Curvature; Geodesics.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Lectures on Differential Geometry**

by

**Wulf Rossmann**-

**University of Ottawa**

This is a collection of lecture notes which the author put together while teaching courses on manifolds, tensor analysis, and differential geometry. He offers them to you in the hope that they may help you, and to complement the lectures.

(

**6884**views)

**Differential Geometry Of Three Dimensions**

by

**C.E. Weatherburn**-

**Cambridge University Press**

The book is devoted to differential invariants for a surface and their applications. By the use of vector methods the presentation is both simplified and condensed, and students are encouraged to reason geometrically rather than analytically.

(

**2735**views)

**Introduction to Differential Geometry and General Relativity**

by

**Stefan Waner**

Smooth manifolds and scalar fields, tangent vectors, contravariant and covariant vector fields, tensor fields, Riemannian manifolds, locally Minkowskian manifolds, covariant differentiation, the Riemann curvature tensor, premises of general relativity.

(

**16179**views)

**Differential Geometry Course Notes**

by

**Richard Koch**-

**University of Oregon**

These are differential geometry course notes. From the table of contents: Preface; Curves; Surfaces; Extrinsic Theory; The Covariant Derivative; The Theorema Egregium; The Gauss-Bonnet Theorem; Riemann's Counting Argument.

(

**6567**views)