**Differential Geometry**

by Balazs Csikos

**Publisher**: Eötvös Loránd University 2010**Number of pages**: 123

**Description**:

Contents: Basic Structures on Rn, Length of Curves; Curvatures of a Curve; Plane Curves; 3D Curves; Hypersurfaces; Surfaces in the 3-dimensional space; The fundamental equations of hypersurface theory; Topological and Differentiable Manifolds; The Tangent Bundle; The Lie Algebra of Vector Fields; Differentiation of Vector Fields; Curvature; Geodesics.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Elementary Differential Geometry**

by

**Gilbert Weinstein**-

**UAB**

These notes are for a beginning graduate level course in differential geometry. It is assumed that this is the students' first course in the subject. Thus the choice of subjects and presentation has been made to facilitate a concrete picture.

(

**8940**views)

**A Course Of Differential Geometry**

by

**John Edward Campbell**-

**Clarendon Press**

Contents: Tensor theory; The ground form when n=2; Geodesics in two-way space; Two-way space as a locus in Euclidean space; Deformation of a surface and congruences; Curves in Euclidean space and on a surface; The ruled surface; Minimal surface; etc.

(

**2680**views)

**Lectures on Differential Geometry**

by

**Wulf Rossmann**-

**University of Ottawa**

This is a collection of lecture notes which the author put together while teaching courses on manifolds, tensor analysis, and differential geometry. He offers them to you in the hope that they may help you, and to complement the lectures.

(

**7801**views)

**Differential Geometry: Lecture Notes**

by

**Dmitri Zaitsev**-

**Trinity College Dublin**

From the table of contents: Chapter 1. Introduction to Smooth Manifolds; Chapter 2. Basic results from Differential Topology; Chapter 3. Tangent spaces and tensor calculus; Tensors and differential forms; Chapter 4. Riemannian geometry.

(

**7560**views)