**Combinatorial Knot Theory**

by Louis H. Kauffman

**Publisher**: University of Illinois at Chicago 2009**Number of pages**: 159

**Description**:

This book is an introduction to knot theory and to Witten's approach to knot theory via his functional integral. Contents: Topics in combinatorial knot theory; State Models and State Summations; Vassiliev Invariants and Witten's Functional Integral.

Download or read it online for free here:

**Download link**

(3.6MB, PDF)

## Similar books

**High-dimensional Knot Theory**

by

**Andrew Ranicki**-

**Springer**

This book is an introduction to high-dimensional knot theory. It uses surgery theory to provide a systematic exposition, and it serves as an introduction to algebraic surgery theory, using high-dimensional knots as the geometric motivation.

(

**8327**views)

**E 'Infinite' Ring Spaces and E 'Infinite' Ring Spectra**

by

**J. P. May**-

**Springer**

The theme of this book is infinite loop space theory and its multiplicative elaboration. The main goal is a complete analysis of the relationship between the classifying spaces of geometric topology and the infinite loop spaces of algebraic K-theory.

(

**7937**views)

**CDBooK: Introduction to Vassiliev Knot invariants**

by

**S.Chmutov, S.Duzhin, J.Mostovoy**-

**Ohio State Universit**

An introduction to the theory of finite type (Vassiliev) knot invariants, with a stress on its combinatorial aspects. Written for readers with no background in this area, and we care more about the basic notions than about more advanced material.

(

**7077**views)

**The Geometry and Topology of Three-Manifolds**

by

**William P Thurston**-

**Mathematical Sciences Research Institute**

The text describes the connection between geometry and lowdimensional topology, it is useful to graduate students and mathematicians working in related fields, particularly 3-manifolds and Kleinian groups. Much of the material or technique is new.

(

**13247**views)