**Strings and Geometry**

by M. Douglas, J. Gauntlett, M. Gross

**Publisher**: American Mathematical Society 2004**ISBN/ASIN**: 082183715X**ISBN-13**: 9780821837153**Number of pages**: 384

**Description**:

This volume highlights some of the current interests of researchers working at the interface between string theory and algebraic geometry. The topics covered include manifolds of special holonomy, supergravity, supersymmetry, D-branes, the McKay correspondence and the Fourier-Mukai transform.

Download or read it online for free here:

**Download link**

(2.9MB, PDF)

## Similar books

**Modular Functions and Modular Forms**

by

**J. S. Milne**

This is an introduction to the arithmetic theory of modular functions and modular forms, with an emphasis on the geometry. Prerequisites are the algebra and complex analysis usually covered in advanced undergraduate or first-year graduate courses.

(

**10660**views)

**Lectures on the topological recursion for Higgs bundles and quantum curves**

by

**Olivia Dumitrescu, Motohico Mulase**-

**arXiv**

The paper aims at giving an introduction to the notion of quantum curves. The main purpose is to describe the discovery of the relation between the topological recursion and the quantization of Hitchin spectral curves associated with Higgs bundles.

(

**4254**views)

**Algebraic Curves: an Introduction to Algebraic Geometry**

by

**William Fulton**-

**Benjamin**

These notes develop the theory of algebraic curves from the viewpoint of modern algebraic geometry, but without excessive prerequisites. It assumed that the reader is familiar with some basic properties of rings, ideals, and polynomials.

(

**13023**views)

**Lectures on Siegel's Modular Functions**

by

**H. Maass**-

**Tata Institute of Fundamental Research**

Contents: Modular Group of Degree n; Symplectic group of degree n; Reduction Theory of Positive Definite Quadratic Forms; Fundamental Domain of the Modular Group of Degree n; Modular Forms of Degree n; Algebraic dependence of modular forms; etc.

(

**9011**views)