subcategories
Field Theory (16)
Geometry & Physics (17)
Quaternions (7)
String Theory (24)
e-books in Mathematical Physics category
by Ganesh Prasad - Patna University , 1924
The reason for my choosing the partial differential equations as the subject for these lectures is my wish to inspire in my audience a love for Mathematics. I give a brief historical account of the application of Mathematics to natural phenomena.
(687 views)
by Young Suh Kim (ed.) - MDPI AG , 2017
With a degree of exaggeration, modern physics is the physics of harmonic oscillators and two-by-two matrices. Indeed, they constitute the basic language for the symmetry problems in physics, and thus the main theme of this journal.
(906 views)
by Vicente Cortes, Alexander S. Haupt - arXiv , 2016
Topics include Lagrangian Mechanics, Hamiltonian Mechanics, Hamilton-Jacobi Theory, Classical Field Theory formulated in the language of jet bundles, field theories such as sigma models, gauge theory, and Einstein's theory of general relativity.
(2824 views)
by Oliver Dimon Kellog - Springer , 1929
The present volume gives a systematic treatment of potential functions. It has a purpose to serve as an introduction for students and to provide the reader with the fundamentals of the subject, so that he may proceed immediately to the applications.
(1176 views)
by Max Lein - arXiv , 2015
These lecture notes give an overview of how to view and solve differential equations that are common in physics. They cover Hamilton's equations, variations of the Schroedinger equation, the heat equation, the wave equation and Maxwell's equations.
(3546 views)
by Nicolas Raymond - arXiv , 2014
'Little Magnetic Book' is devoted to the spectral analysis of the magnetic Laplacian in various geometric situations. In particular the influence of the geometry on the discrete spectrum is analysed in many asymptotic regimes.
(1950 views)
by A. Pankov - Vinnitsa State Pedagogical University , 2006
Contents: Operators in Hilbert spaces; Spectral theorem of self-adjoint operators; Compact operators and the Hilbert-Schmidt theorem; Perturbation of discrete spectrum; Variational principles; One-dimensional Schroedinger operator; etc.
(4758 views)
by Pieter Naaijkens - arXiv , 2013
These are the lecture notes for a one semester course at Leibniz University Hannover. The main aim of the course is to give an introduction to the mathematical methods used in describing discrete quantum systems consisting of infinitely many sites.
(2654 views)
by Solomon I. Khmelnik - MiC , 2011
In this book we formulate and prove the variational extremum principle for viscous incompressible and compressible fluid, from which principle follows that the Navier-Stokes equations represent the extremum conditions of a certain functional.
(5119 views)
by Eric L. Michelsen - UCSD , 2012
This text covers some of the unusual or challenging concepts in graduate mathematical physics. This work is meant to be used with any standard text, to help emphasize those things that are most confusing for new students.
(3278 views)
by Ernesto Estrada - arXiv , 2013
Text consisting of some of the main areas of research in graph theory applied to physics. It includes graphs in condensed matter theory, such as the tight-binding and the Hubbard model. It follows the study of graph theory and statistical physics...
(4725 views)
by G.Sardanashvily - arXiv , 2013
We consider integrable Hamiltonian systems in a general setting of invariant submanifolds which need not be compact. This is the case a global Kepler system, non-autonomous integrable Hamiltonian systems and systems with time-dependent parameters.
(4165 views)
by A. Goetschy, S.E. Skipetrov - arXiv , 2013
We review the state of the art of the theory of Euclidean random matrices, focusing on the density of their eigenvalues. Both Hermitian and non-Hermitian matrices are considered and links with simpler random matrix ensembles are established.
(3460 views)
by Jean Claude Dutailly - arXiv , 2012
This is a comprehensive and precise coverage of the mathematical concepts and tools used in present theoretical physics: differential geometry, Lie groups, fiber bundles, Clifford algebra, differential operators, normed algebras, connections, etc.
(8403 views)
by Alex Alaniz - UC Riverside , 2013
These are step-by-verifiable-step notes which are designed to help students with a year of calculus based physics who are about to enroll in ordinary differential equations go all the way to doctoral foundations in either mathematics or physics.
(7225 views)
by Roy McWeeny - Learning Development Institute , 2011
Contents: Linear vector spaces; Elements of tensor algebra; The tensor calculus (Volume elements, tensor densities, and volume integrals); Applications in Relativity Theory (Elements of special relativity, Tensor form of Maxwell's equations).
(7569 views)
by Alex Madon - Wikibooks , 2010
The goal of this book is to propose an ensemble view of modern physics. The coherence between various fields of physics is insured by following two axes: a first is the universal mathematical language; the second is the study of the N body problem.
(3959 views)
by J.F. Carinena, J. de Lucas - arXiv , 2011
Lie systems form a class of systems of first-order ordinary differential equations whose general solutions can be described in terms of certain finite families of particular solutions and a set of constants, by means of a particular type of mapping.
(4698 views)
by John C. Baez, Mike Stay - arXiv , 2009
There is extensive network of analogies between physics, topology, logic and computation. In this paper we make these analogies precise using the concept of 'closed symmetric monoidal category'. We assume no prior knowledge of category theory.
(5499 views)
by P. G. Ciarlet - Tata Institute of Fundamental Research , 1983
In this book a non-linear system of partial differential equations will be established as a mathematical model of elasticity. An energy functional will be established and existence results will be studied in the second chapter.
(4495 views)
by Robert Feger, Thomas W. Kephart - arXiv , 2012
We present the Mathematica application LieART (Lie Algebras and Representation Theory) for computations in Lie Algebras and representation theory, such as tensor product decomposition and subalgebra branching of irreducible representations.
(4673 views)
by Cathleen S. Morawetz - Tata Institute Of Fundamental Research , 1981
Introduction to certain aspects of gas dynamics concentrating on some of the most important nonlinear problems, important not only from the engineering or computational point of view but also because they offer great mathematical challenges.
(4480 views)
by S.R.S. Varadhan - Tata Institute of Fundamental Research , 1989
Starting from Brownian Motion, the lectures quickly got into the areas of Stochastic Differential Equations and Diffusion Theory. The section on Martingales is based on additional lectures given by K. Ramamurthy of the Indian Institute of Science.
(4775 views)
by Vojkan Jaksic - McGill University , 2005
The subject of these lecture notes is spectral theory of self-adjoint operators and some of its applications to mathematical physics. The main theme is the interplay between spectral theory of self-adjoint operators and classical harmonic analysis.
(4653 views)
by David Tong - University of Cambridge , 2005
These lectures cover aspects of solitons with focus on applications to the quantum dynamics of supersymmetric gauge theories and string theory. The lectures consist of four sections, each dealing with a different soliton.
(4711 views)
by Karl Svozil - Edition Funzl , 2012
This book presents the course material for mathemathical methods of theoretical physics intended for an undergraduate audience. The author most humbly presents his own version of what is important for standard courses of contemporary physics.
(4950 views)
by C.L. Siegel - Tata Institute of Fundamental Research , 1967
From the table of contents: The differential equations of mechanics; The three-body problem : simple collisions (The n-body problem); The three-body problem: general collision (Stability theory of solutions of differential equations).
(4763 views)
- Wikibooks , 2017
A book on common techniques of applied mathematics that are often used in theoretical physics. It may be accessible to anyone with beginning undergraduate training in mathematics and physics. It is useful for anyone wishing to study advanced Physics.
(5542 views)
by W. Wilson - Dutton , 1931
The purpose of the present work is to present an account of the theoretical side of physics which, without being too elaborate, will be sufficiently comprehensive to be useful to teachers and students. This volume deals with mechanics and heat.
(5305 views)
by G. S. Beloglazov, et al. - Samara University Press , 2010
The present Proceedings is intended to be used by the students of physical and mechanical-mathematical departments of the universities, who are interested in acquiring a deeper knowledge of the methods of mathematical and theoretical physics.
(5737 views)
by Klaus Kirsten, Floyd L. Williams - Cambridge University Press , 2010
This book provides an introduction, with applications, to three interconnected mathematical topics: zeta functions in their rich variety; modular forms; vertex operator algebras. Applications of the material to physics are presented.
(5499 views)
by Boris Dubrovin - SISSA , 2008
These are lecture notes on various topics in analytic theory of differential equations: Singular points of solutions to analytic differential equations; Monodromy of linear differential operators with rational coefficients.
(10495 views)
by Laszlo Erdos - arXiv , 2010
Einstein's kinetic theory of the Brownian motion, based upon water molecules bombarding a heavy pollen, provided an explanation of diffusion from the Newtonian mechanics. It is a challenge to verify the diffusion from the Schroedinger equation.
(4562 views)
by Nikos Theodorakopoulos - Universitaet Konstanz , 2006
This set of lectures describes some of the basic concepts mainly from the angle of condensed matter / statistical mechanics, an area which provided an impressive list of nonlinearly governed phenomena over the last fifty years.
(5151 views)
by Michael Stone, Paul Goldbart - Cambridge University Press , 2009
This book provides a graduate-level introduction to the mathematics used in research in physics. It focuses on differential and integral equations, Fourier series, calculus of variations, differential geometry, topology and complex variables.
(12330 views)
by Vadim Kuznetsov, Vladimir Kisil - University of Leeds , 2003
This text presents fundamentals of special functions theory and its applications in partial differential equations of mathematical physics. The course covers topics in harmonic, classical and functional analysis, and combinatorics.
(9585 views)
by Sergiu I. Vacaru - arXiv , 2001
The monograph summarizes the author's results on the geometry of anholonomic and locally anisotropic interactions. The main subjects are in the theory of field interactions, strings and diffusion processes on spaces, superspaces and isospaces.
(6686 views)
by David Ellwood, at al. - American Mathematical Society , 2006
Mathematical gauge theory studies connections on principal bundles. The book provides an introduction to current research, covering material from Heegaard Floer homology, contact geometry, smooth four-manifold topology, and symplectic four-manifolds.
(7463 views)
by B. Eynard , 2001
This is an introductory course about random matrices. These notes will give the reader a smell of that fascinating tool for physicists and mathematicians that are Random Matrices, and they can give the envy to learn and search more.
(5781 views)
by Cumrun Vafa, Eric Zaslow - American Mathematical Society , 2003
The book provides an introduction to the field of mirror symmetry from both a mathematical and physical perspective. After covering the relevant background material, the monograph is devoted to the proof of mirror symmetry from various viewpoints.
(7260 views)
by Peter B. Gilkey - Publish or Perish Inc. , 1984
This book treats the Atiyah-Singer index theorem using the heat equation, which gives a local formula for the index of any elliptic complex. Heat equation methods are also used to discuss Lefschetz fixed point formulas and the Gauss-Bonnet theorem.
(5313 views)
by Andrew E. Blechman , 2007
The author summarizes most of the more advanced mathematical trickery seen in electrodynamics and quantum mechanics in simple and friendly terms with examples. Mathematical tools such as tensors or differential forms are covered in this text.
(16969 views)
by Andrei Khrennikov, Gavriel Segre - arXiv , 2005
Contents: The hyperbolic algebra as a bidimensional Clifford algebra; Limits and series in the hyperbolic plane; The hyperbolic Euler formula; Analytic functions in the hyperbolic plane; Multivalued functions on the hyperbolic plane; etc.
(7261 views)
by Marios Tsatsos - arXiv , 2008
The basic notion of how topoi can be utilized in physics is presented here. Topos and category theory serve as valuable tools which extend our ordinary set-theoretical conceptions, can give rise to new descriptions of quantum physics.
(5220 views)
by A. Doikou, S. Evangelisti, G. Feverati, N. Karaiskos - arXiv , 2010
The authors review the basic concepts regarding quantum integrability. Special emphasis is given on the algebraic content of integrable models. A short review on quantum groups as well as the quantum inverse scattering method is also presented.
(5005 views)
by Mario Argeri, Pierpaolo Mastrolia - arXiv , 2007
The authors review the method of differential equations for the evaluation of D-dimensionally regulated Feynman integrals. After dealing with the technique, we discuss its application in the context of corrections to the photon propagator in QED.
(7875 views)
by Arnold Neumaier, Dennis Westra - arXiv , 2011
This book presents classical, quantum, and statistical mechanics in an algebraic setting, thereby introducing mathematicians, physicists, and engineers to the ideas relating classical and quantum mechanics with Lie algebras and Lie groups.
(8101 views)
by F. Smarandache - North-European Scientific Publishers , 2010
Neutrosophic logics is one of the promising research instruments, which could be successfully applied by a theoretical physicist. Neutrosophic logics states that neutralities may be between any physical states, or states of space-time.
(5219 views)
by Douglas Lundholm, Lars Svensson - arXiv , 2009
These are lecture notes for a course on the theory of Clifford algebras. The various applications include vector space and projective geometry, orthogonal maps and spinors, normed division algebras, as well as simplicial complexes and graph theory.
(8473 views)
by Matej Pavsic - arXiv , 2006
This a book is for those who would like to learn something about special and general relativity beyond the usual textbooks, about quantum field theory, the elegant Fock-Schwinger-Stueckelberg proper time formalism, and much more.
(8153 views)
by William Elwood Byerly - Ginn and company , 1893
From the table of contents: Development in Trigonometric Series; Convergence of Fourier's Series; Solution of Problems in Physics by the Aid of Fourier's Integrals and Fourier's Series; Zonal Harmonics; Spherical Harmonics; Cylindrical Harmonics; ...
(10522 views)
by Pavel Bleher, Alexander Its - Cambridge University Press , 2001
The book covers broad areas such as topologic and combinatorial aspects of random matrix theory; scaling limits, universalities and phase transitions in matrix models; universalities for random polynomials; and applications to integrable systems.
(10513 views)
by Ferdi Aryasetiawan - University of Lund , 1997
The text deals with basic Group Theory and its applications. Contents: Abstract Group Theory; Theory of Group Representations; Group Theory in Quantum Mechanics; Lie Groups; Atomic Physics; The Group SU2: Isospin; The Point Groups; The Group SU3.
(8950 views)
by Willard Miller - Academic Press , 1968
The book studies the role played by special function theory in the formalism of mathematical physics. It demonstrates that special functions which arise in mathematical models are dictated by symmetry groups admitted by the models.
(8007 views)
by G. 't Hooft, M. J. G. Veltman - Utrecht University , 2007
Contents: Quantum mechanics and rotation invariance; The group of rotations in three dimensions; More about representations; Ladder operators; The group SU(2); Spin and angular distributions; Isospin; The Hydrogen Atom; The group SU(3); etc.
(9106 views)
by William W. Symes - Rice University , 2006
This course aims to make students aware of the physical origins of the main partial differential equations of classical mathematical physics, including the equations of fluid and solid mechanics, thermodynamics, and classical electrodynamics.
(9489 views)
by John C. Baez - University of California , 2001
The octonions are the largest of the four normed division algebras. The author describes them and their relation to Clifford algebras and spinors, Bott periodicity, projective and Lorentzian geometry, Jordan algebras, and the exceptional Lie groups.
(13218 views)
by Igor Dolgachev , 1996
A set of class notes taken by math graduate students, the goal of the course was to introduce some basic concepts from theoretical physics which play so fundamental role in a recent intermarriage between physics and pure mathematics.
(10102 views)
by Jerrold E. Marsden - Publish or Perish, inc , 1974
The book introduces some methods of global analysis which are useful in various problems of mathematical physics. The author wants to make use of ideas from geometry to shed light on problems in analysis which arise in mathematical physics.
(10599 views)
by Albert Tarantola - Springer , 2006
Reviews Lie groups, differential geometry, and adapts the usual notion of linear tangent application to the intrinsic point of view proposed for physics. The theory of heat conduction and the theory of linear elastic media are studied in detail.
(10699 views)
by Herbert S Wilf - Dover Publications , 1962
The book for the advanced undergraduates and graduates in the natural sciences. Vector spaces and matrices, orthogonal functions, polynomial equations, asymptotic expansions, ordinary differential equations, conformal mapping, and extremum problems.
(35678 views)