Logo

Introduction to Differential Topology, de Rham Theory and Morse Theory

Small book cover: Introduction to Differential Topology, de Rham Theory and Morse Theory

Introduction to Differential Topology, de Rham Theory and Morse Theory
by

Publisher: Radboud University
Number of pages: 80

Description:
Contents: Why Differential Topology? Basics of Differentiable Manifolds; Local structure of smooth maps; Transversality Theory; More General Theory; Differential Forms and de Rham Theory; Tensors and some Riemannian Geometry; Morse Theory; Perspectives.

Home page url

Download or read it online for free here:
Download link
(550KB, PDF)

Similar books

Book cover: Manifolds of Differentiable MappingsManifolds of Differentiable Mappings
by - Birkhauser
This book is devoted to the theory of manifolds of differentiable mappings and contains result which can be proved without the help of a hard implicit function theorem of nuclear function spaces. All the necessary background is developed in detail.
(11211 views)
Book cover: Differential TopologyDifferential Topology
by - Johns Hopkins University
This is an elementary text book for the civil engineering students with no prior background in point-set topology. This is a rather terse mathematical text, but provided with an abundant supply of examples and exercises with hints.
(11695 views)
Book cover: Differential Topology and Morse TheoryDifferential Topology and Morse Theory
by - University of Sheffield
These notes describe basic material about smooth manifolds (vector fields, flows, tangent bundle, partitions of unity, Whitney embedding theorem, foliations, etc...), introduction to Morse theory, and various applications.
(11851 views)
Book cover: Tight and Taut SubmanifoldsTight and Taut Submanifolds
by - Cambridge University Press
Tight and taut submanifolds form an important class of manifolds with special curvature properties, one that has been studied intensively by differential geometers since the 1950's. This book contains six articles by leading experts in the field.
(12732 views)