Logo

Riemannian Geometry by Richard L. Bishop

Small book cover: Riemannian Geometry

Riemannian Geometry
by

Publisher: arXiv
Number of pages: 67

Description:
These notes on Riemannian geometry use the bases bundle and frame bundle, as in Geometry of Manifolds, to express the geometric structures. It has more problems and omits the background material. It starts with the definition of Riemannian and semi-Riemannian structures on manifolds. Affine connections, geodesics, torsion and curvature, the exponential map, and the Riemannian connection follow quickly.

Home page url

Download or read it online for free here:
Download link
(580KB, PDF)

Download mirrors:
Mirror 1

Similar books

Book cover: Holonomy Groups in Riemannian GeometryHolonomy Groups in Riemannian Geometry
by - arXiv
The holonomy group is one of the fundamental analytical objects that one can define on a Riemannian manfold. These notes provide a first introduction to the main general ideas on the study of the holonomy groups of a Riemannian manifold.
(6501 views)
Book cover: Lectures on Geodesics in Riemannian GeometryLectures on Geodesics in Riemannian Geometry
by - Tata Institute of Fundamental Research
The main topic of these notes is geodesics. Our aim is to give a fairly complete treatment of the foundations of Riemannian geometry and to give global results for Riemannian manifolds which are subject to geometric conditions of various types.
(7375 views)
Book cover: A Panoramic View of Riemannian GeometryA Panoramic View of Riemannian Geometry
by - Springer
In this monumental work, Marcel Berger manages to survey large parts of present day Riemannian geometry. The book offers a great opportunity to get a first impression of some part of Riemannian geometry, together with hints for further reading.
(9745 views)
Book cover: Riemannian GeometryRiemannian Geometry
by
Based on the lecture notes on differential geometry. From the contents: Differentiable manifolds, a brief review; Riemannian metrics; Connections; Geodesics; Curvature; Jacobi fields; Curvature and topology; Comparison geometry; The sphere theorem.
(6404 views)