Logo

Lecture Notes on Embedded Contact Homology

Small book cover: Lecture Notes on Embedded Contact Homology

Lecture Notes on Embedded Contact Homology
by

Publisher: arXiv
Number of pages: 88

Description:
These notes give an introduction to embedded contact homology (ECH) of contact three-manifolds, gathering together many basic notions which are scattered across a number of papers. We also discuss the origins of ECH, including various remarks and examples which have not been previously published. Finally, we review the recent application to four-dimensional symplectic embedding problems.

Home page url

Download or read it online for free here:
Download link
(750KB, PDF)

Similar books

Book cover: Introduction to the Basics of Heegaard Floer HomologyIntroduction to the Basics of Heegaard Floer Homology
by - arXiv
This is an introduction to the basics of Heegaard Floer homology with some emphasis on the hat theory and to the contact geometric invariants in the theory. It is designed to be comprehensible to people without any prior knowledge of the subject.
(4064 views)
Book cover: First Steps Towards a Symplectic DynamicsFirst Steps Towards a Symplectic Dynamics
by - arXiv
Both dynamical systems and symplectic geometry have rich theories and the time seems ripe to develop the common core with integrated ideas from both fields. We discuss problems which show how dynamical systems and symplectic ideas come together.
(7072 views)
Book cover: Introduction to Symplectic Field TheoryIntroduction to Symplectic Field Theory
by - arXiv
We sketch in this article a new theory, which we call Symplectic Field Theory or SFT, which provides an approach to Gromov-Witten invariants of symplectic manifolds and their Lagrangian submanifolds in the spirit of topological field theory.
(8438 views)
Book cover: Contact GeometryContact Geometry
by - arXiv
This is an introductory text on the more topological aspects of contact geometry. After discussing some of the fundamental results of contact topology, I move on to a detailed exposition of the original proof of the Lutz-Martinet theorem.
(7415 views)