Learning Deep Architectures for AI
by Yoshua Bengio
Publisher: Now Publishers 2009
ISBN/ASIN: 1601982941
ISBN-13: 9781601982940
Number of pages: 130
Description:
This monograph discusses the motivations and principles regarding learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models such as Deep Belief Networks.
Download or read it online for free here:
Download link
(1.1MB, PDF)
Similar books
An Introduction to Statistical Learning
by G. James, D. Witten, T. Hastie, R. Tibshirani - Springer
This book provides an introduction to statistical learning methods. It contains a number of R labs with detailed explanations on how to implement the various methods in real life settings and it is a valuable resource for a practicing data scientist.
(10475 views)
by G. James, D. Witten, T. Hastie, R. Tibshirani - Springer
This book provides an introduction to statistical learning methods. It contains a number of R labs with detailed explanations on how to implement the various methods in real life settings and it is a valuable resource for a practicing data scientist.
(10475 views)
An Introductory Study on Time Series Modeling and Forecasting
by Ratnadip Adhikari, R. K. Agrawal - arXiv
This work presents a concise description of some popular time series forecasting models used in practice, with their features. We describe three important classes of time series models, viz. the stochastic, neural networks and SVM based models.
(12518 views)
by Ratnadip Adhikari, R. K. Agrawal - arXiv
This work presents a concise description of some popular time series forecasting models used in practice, with their features. We describe three important classes of time series models, viz. the stochastic, neural networks and SVM based models.
(12518 views)
Reinforcement Learning: An Introduction
by Richard S. Sutton, Andrew G. Barto - The MIT Press
The book provides a clear and simple account of the key ideas and algorithms of reinforcement learning. It covers the history and the most recent developments and applications. The only necessary mathematical background are concepts of probability.
(27943 views)
by Richard S. Sutton, Andrew G. Barto - The MIT Press
The book provides a clear and simple account of the key ideas and algorithms of reinforcement learning. It covers the history and the most recent developments and applications. The only necessary mathematical background are concepts of probability.
(27943 views)
Machine Learning
by Abdelhamid Mellouk, Abdennacer Chebira - InTech
Neural machine learning approaches, Hamiltonian neural networks, similarity discriminant analysis, machine learning methods for spoken dialogue simulation and optimization, linear subspace learning for facial expression analysis, and more.
(16897 views)
by Abdelhamid Mellouk, Abdennacer Chebira - InTech
Neural machine learning approaches, Hamiltonian neural networks, similarity discriminant analysis, machine learning methods for spoken dialogue simulation and optimization, linear subspace learning for facial expression analysis, and more.
(16897 views)