Introduction to Differential Geometry and General Relativity
by Stefan Waner
2005
Number of pages: 138
Description:
From the table of contents: distance, open sets, parametric surfaces and smooth functions, smooth manifolds and scalar fields, tangent vectors and the tangent space, contravariant and covariant vector fields, tensor fields, Riemannian manifolds, locally Minkowskian manifolds, covariant differentiation, geodesics and local inertial frames, the Riemann curvature tensor, comoving frames and proper time, the stress tensor and the relativistic stress-energy tensor, three basic premises of general relativity, the Einstein field equations and derivation of Newton's law, the Schwarzschild metric and event horizons, White Dwarfs, neutron stars and black holes.
Download or read it online for free here:
Download link
(1.7MB, PDF)
Similar books

by Robert Geroch - arXiv
All partial differential equations that describe physical phenomena in space-time can be cast into a universal quasilinear, first-order form. We describe some broad features of systems of differential equations so formulated.
(16928 views)

by V. L. Kalashnikov - arXiv
The author presents the pedagogical introduction to relativistic astrophysics and cosmology, which is based on computational and graphical resources of Maple 6. The knowledge of basics of general relativity and differential geometry is supposed.
(17398 views)

by Eric Poisson - University of Guelph
From the table of contents: Preliminaries; Integration techniques; First post-Minkowskian approximation; Second post-Minkowskian approximation; Equations of motion; Gravitational waves; Energy radiated and radiation reaction.
(10777 views)

by Tevian Dray - Oregon State University
The manuscript emphasizes the use of differential forms, rather than tensors, which are barely mentioned. The focus is on the basic examples, namely the Schwarzschild black hole and the Friedmann-Robertson-Walker cosmological models.
(11876 views)