Logo

Course of Differential Geometry

Small book cover: Course of Differential Geometry

Course of Differential Geometry
by

Publisher: Samizdat Press
ISBN/ASIN: 5747701290
Number of pages: 132

Description:
This book is a textbook for the basic course of differential geometry. It is recommended as an introductory material for this subject. The book is devoted to the firs acquaintance with the differential geometry. Therefore it begins with the theory of curves in three-dimensional Euclidean space E. Then the vectorial analysis in E is stated both in Cartesian and curvilinear coordinates, afterward the theory of surfaces in the space E is considered.

Home page url

Download or read it online for free here:
Download link
(1MB, PDF)

Similar books

Book cover: Notes on Differential GeometryNotes on Differential Geometry
by - Victoria University of Wellington
In this text the author presents an overview of differential geometry. Topics covered: Topological Manifolds and differentiable structure; Tangent and cotangent spaces; Fibre bundles; Geodesics and connexions; Riemann curvature; etc.
(5733 views)
Book cover: A Course Of Differential GeometryA Course Of Differential Geometry
by - Clarendon Press
Contents: Tensor theory; The ground form when n=2; Geodesics in two-way space; Two-way space as a locus in Euclidean space; Deformation of a surface and congruences; Curves in Euclidean space and on a surface; The ruled surface; Minimal surface; etc.
(1893 views)
Book cover: Differential Geometry Of Three DimensionsDifferential Geometry Of Three Dimensions
by - Cambridge University Press
The book is devoted to differential invariants for a surface and their applications. By the use of vector methods the presentation is both simplified and condensed, and students are encouraged to reason geometrically rather than analytically.
(2735 views)
Book cover: Topics in Differential GeometryTopics in Differential Geometry
by - American Mathematical Society
Fundamentals of differential geometry: manifolds, flows, Lie groups and their actions, invariant theory, differential forms and de Rham cohomology, bundles and connections, Riemann manifolds, isometric actions, and symplectic and Poisson geometry.
(6870 views)