Logo

Course of Differential Geometry

Small book cover: Course of Differential Geometry

Course of Differential Geometry
by

Publisher: Samizdat Press
ISBN/ASIN: 5747701290
Number of pages: 132

Description:
This book is a textbook for the basic course of differential geometry. It is recommended as an introductory material for this subject. The book is devoted to the firs acquaintance with the differential geometry. Therefore it begins with the theory of curves in three-dimensional Euclidean space E. Then the vectorial analysis in E is stated both in Cartesian and curvilinear coordinates, afterward the theory of surfaces in the space E is considered.

Home page url

Download or read it online for free here:
Download link
(1MB, PDF)

Similar books

Book cover: Notes on Differential GeometryNotes on Differential Geometry
by - Van Nostrand
A concise introduction to differential geometry. The ten chapters of Hicks' book contain most of the mathematics that has become the standard background for not only differential geometry, but also much of modern theoretical physics and cosmology.
(8719 views)
Book cover: Introduction to Differential Geometry and General RelativityIntroduction to Differential Geometry and General Relativity
by
Smooth manifolds and scalar fields, tangent vectors, contravariant and covariant vector fields, tensor fields, Riemannian manifolds, locally Minkowskian manifolds, covariant differentiation, the Riemann curvature tensor, premises of general relativity.
(16801 views)
Book cover: Differentiable ManifoldsDifferentiable Manifolds
by
The historical driving force of the theory of manifolds was General Relativity, where the manifold is four-dimensional spacetime, wormholes and all. This text is occupied with the theory of differential forms and the exterior derivative.
(12988 views)
Book cover: Notes on Differential GeometryNotes on Differential Geometry
by - Victoria University of Wellington
In this text the author presents an overview of differential geometry. Topics covered: Topological Manifolds and differentiable structure; Tangent and cotangent spaces; Fibre bundles; Geodesics and connexions; Riemann curvature; etc.
(6177 views)