**Foliations and the Geometry of 3-manifolds**

by Danny Calegari

**Publisher**: Oxford University Press 2007**ISBN/ASIN**: 0198570082**ISBN-13**: 9780198570080**Number of pages**: 371

**Description**:

The purpose of this book is to give an exposition of the "pseudo-Anosov" theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms, and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions.

Download or read it online for free here:

**Download link**

(3.9MB, PDF)

## Similar books

**High-dimensional Knot Theory**

by

**Andrew Ranicki**-

**Springer**

This book is an introduction to high-dimensional knot theory. It uses surgery theory to provide a systematic exposition, and it serves as an introduction to algebraic surgery theory, using high-dimensional knots as the geometric motivation.

(

**8117**views)

**Four-manifolds, Geometries and Knots**

by

**Jonathan Hillman**-

**arXiv**

The goal of the book is to characterize algebraically the closed 4-manifolds that fibre nontrivially or admit geometries in the sense of Thurston, or which are obtained by surgery on 2-knots, and to provide a reference for the topology of such knots.

(

**7226**views)

**Algebraic L-theory and Topological Manifolds**

by

**A. A. Ranicki**-

**Cambridge University Press**

Assuming no previous acquaintance with surgery theory and justifying all the algebraic concepts used by their relevance to topology, Dr Ranicki explains the applications of quadratic forms to the classification of topological manifolds.

(

**5054**views)

**Diffeomorphisms of Elliptic 3-Manifolds**

by

**S. Hong, J. Kalliongis, D. McCullough, J. H. Rubinstein**-

**arXiv**

The elliptic 3-manifolds are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature. For any elliptic 3-manifold M, the inclusion from the isometry group of M to the diffeomorphism group of M is a homotopy equivalence.

(

**4688**views)