Diffeomorphisms of Elliptic 3-Manifolds
by S. Hong, J. Kalliongis, D. McCullough, J. H. Rubinstein
Publisher: arXiv 2011
Number of pages: 185
Description:
The elliptic 3-manifolds are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature, that is, those that have finite fundamental group. The (Generalized) Smale Conjecture asserts that for any elliptic 3-manifold M, the inclusion from the isometry group of M to the diffeomorphism group of M is a homotopy equivalence.
Download or read it online for free here:
Download link
(1.6MB, PDF)
Similar books

by A. A. Ranicki - Cambridge University Press
Assuming no previous acquaintance with surgery theory and justifying all the algebraic concepts used by their relevance to topology, Dr Ranicki explains the applications of quadratic forms to the classification of topological manifolds.
(5006 views)

by Andrew Ranicki - Cambridge University Press
This is the first treatment of the applications of the lower K- and L-groups to the topology of manifolds such as Euclidean spaces, via Whitehead torsion and the Wall finiteness and surgery obstructions. Only elementary constructions are used.
(5698 views)

by Danny Calegari - Oxford University Press
The book gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms, and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions.
(8049 views)

by C.T.C. Wall, A. A. Ranicki - American Mathematical Society
This book represents an attempt to collect and systematize the methods and main applications of the method of surgery, insofar as compact (but not necessarily connected, simply connected or closed) manifolds are involved.
(5491 views)