**Mirror Symmetry**

by Cumrun Vafa, Eric Zaslow

**Publisher**: American Mathematical Society 2003**ISBN/ASIN**: 0821829556**ISBN-13**: 9780821829554**Number of pages**: 950

**Description**:

The aim of the book is to provide a pedagogical introduction to the field of mirror symmetry from both a mathematical and physical perspective. After covering the relevant background material, the main part of the monograph is devoted to the proof of mirror symmetry from various viewpoints. More advanced topics are also discussed. In particular, topological strings at higher genera and the notion of holomorphic anomaly.

Download or read it online for free here:

**Download link**

(4.8MB, PDF)

## Similar books

**Classical Algebraic Geometry: A Modern View**

by

**Igor V. Dolgachev**-

**Cambridge University Press**

The main purpose of the present treatise is to give an account of some of the topics in algebraic geometry which while having occupied the minds of many mathematicians in previous generations have fallen out of fashion in modern times.

(

**5686**views)

**Stacks Project**

by

**Johan de Jong, et al.**

The stacks project aims to build up enough basic algebraic geometry as foundations for algebraic stacks. This implies a good deal of theory on commutative algebra, schemes, varieties, algebraic spaces, has to be developed en route.

(

**7040**views)

**Strings and Geometry**

by

**M. Douglas, J. Gauntlett, M. Gross**-

**American Mathematical Society**

This volume highlights the interface between string theory and algebraic geometry. The topics covered include manifolds of special holonomy, supergravity, supersymmetry, D-branes, the McKay correspondence and the Fourier-Mukai transform.

(

**9975**views)

**Introduction to Algebraic Geometry**

by

**Sudhir R. Ghorpade**-

**Indian Institute of Technology Bombay**

This text is a brief introduction to algebraic geometry. We will focus mainly on two basic results in algebraic geometry, known as Bezout's Theorem and Hilbert's Nullstellensatz, as generalizations of the Fundamental Theorem of Algebra.

(

**6110**views)