**Quantum Physics, Relativity, and Complex Spacetime**

by Gerald Kaiser

**Publisher**: University of Massachusetts at Lowell 2003**ISBN/ASIN**: 0444884653**Number of pages**: 252

**Description**:

A new synthesis of the principles of quantum mechanics and Relativity is proposed in the context of complex differential geometry. The positivity of the energy implies that wave functions and fields can be extended to complex spacetime, and it is shown that this complexification has a solid physical interpretation as an extended phase space. The extended fields can be said to be realistic wavelet transforms of the original fields. A new, algebraic theory of wavelets is developed.

Download or read it online for free here:

**Download link**

(950KB, PDF)

## Similar books

**Lectures On Levi Convexity Of Complex Manifolds And Cohomology Vanishing Theorems**

by

**E. Vesentini**-

**Tata Institute Of Fundamental Research**

These are notes of lectures which the author gave in the winter 1965. Topics covered: Vanishing theorems for hermitian manifolds; W-ellipticity on Riemannian manifolds; Local expressions for and the main inequality; Vanishing Theorems.

(

**4738**views)

**Complex Manifolds**

by

**Julius Ross**-

**Stanford University**

From the table of contents: Complex Manifolds; Almost Complex Structures; Differential Forms; Poincare Lemma; Sheaves and Cohomology; Several Complex Variables; Holomorphic Vector Bundles; Kaehler Manifolds; Hodge Theory; Lefschetz Theorems; etc.

(

**1231**views)

**Complex Manifolds and Hermitian Differential Geometry**

by

**Andrew D. Hwang**-

**University of Toronto**

The intent is not to give a thorough treatment of the algebraic and differential geometry of complex manifolds, but to introduce the reader to material of current interest as quickly as possible. A number of interesting examples is provided.

(

**7040**views)

**Complex Geometry of Nature and General Relativity**

by

**Giampiero Esposito**-

**arXiv**

An attempt is made of giving a self-contained introduction to holomorphic ideas in general relativity, following work over the last thirty years by several authors. The main topics are complex manifolds, spinor and twistor methods, heaven spaces.

(

**11050**views)