Quantum Physics, Relativity, and Complex Spacetime
by Gerald Kaiser
Publisher: University of Massachusetts at Lowell 2003
ISBN/ASIN: 0444884653
Number of pages: 252
Description:
A new synthesis of the principles of quantum mechanics and Relativity is proposed in the context of complex differential geometry. The positivity of the energy implies that wave functions and fields can be extended to complex spacetime, and it is shown that this complexification has a solid physical interpretation as an extended phase space. The extended fields can be said to be realistic wavelet transforms of the original fields. A new, algebraic theory of wavelets is developed.
Download or read it online for free here:
Download link
(950KB, PDF)
Similar books
Complex Geometry of Nature and General Relativity
by Giampiero Esposito - arXiv
An attempt is made of giving a self-contained introduction to holomorphic ideas in general relativity, following work over the last thirty years by several authors. The main topics are complex manifolds, spinor and twistor methods, heaven spaces.
(17127 views)
by Giampiero Esposito - arXiv
An attempt is made of giving a self-contained introduction to holomorphic ideas in general relativity, following work over the last thirty years by several authors. The main topics are complex manifolds, spinor and twistor methods, heaven spaces.
(17127 views)
Lectures On Levi Convexity Of Complex Manifolds And Cohomology Vanishing Theorems
by E. Vesentini - Tata Institute Of Fundamental Research
These are notes of lectures which the author gave in the winter 1965. Topics covered: Vanishing theorems for hermitian manifolds; W-ellipticity on Riemannian manifolds; Local expressions for and the main inequality; Vanishing Theorems.
(9911 views)
by E. Vesentini - Tata Institute Of Fundamental Research
These are notes of lectures which the author gave in the winter 1965. Topics covered: Vanishing theorems for hermitian manifolds; W-ellipticity on Riemannian manifolds; Local expressions for and the main inequality; Vanishing Theorems.
(9911 views)
Complex Manifolds and Hermitian Differential Geometry
by Andrew D. Hwang - University of Toronto
The intent is not to give a thorough treatment of the algebraic and differential geometry of complex manifolds, but to introduce the reader to material of current interest as quickly as possible. A number of interesting examples is provided.
(12214 views)
by Andrew D. Hwang - University of Toronto
The intent is not to give a thorough treatment of the algebraic and differential geometry of complex manifolds, but to introduce the reader to material of current interest as quickly as possible. A number of interesting examples is provided.
(12214 views)
Complex Manifolds
by Julius Ross - Stanford University
From the table of contents: Complex Manifolds; Almost Complex Structures; Differential Forms; Poincare Lemma; Sheaves and Cohomology; Several Complex Variables; Holomorphic Vector Bundles; Kaehler Manifolds; Hodge Theory; Lefschetz Theorems; etc.
(6050 views)
by Julius Ross - Stanford University
From the table of contents: Complex Manifolds; Almost Complex Structures; Differential Forms; Poincare Lemma; Sheaves and Cohomology; Several Complex Variables; Holomorphic Vector Bundles; Kaehler Manifolds; Hodge Theory; Lefschetz Theorems; etc.
(6050 views)