Logo

Quick Tour of the Topology of R

Small book cover: Quick Tour of the Topology of R

Quick Tour of the Topology of R
by

Publisher: University of Illinois at Chicago
Number of pages: 48

Description:
These notes are a supplement for the 'standard undergraduate course' in Analysis at the University of Illinois at Chicago. The aim is to present a more general perspective on the incipient ideas of topology encountered when exploring the rigorous theorem-proof approach to the results of Calculus.

Download or read it online for free here:
Download link
(370KB, PDF)

Similar books

Book cover: Real Variables: With Basic Metric Space TopologyReal Variables: With Basic Metric Space Topology
by - Institute of Electrical & Electronics Engineering
A text for a first course in real variables for students of engineering, physics, and economics, who need to know real analysis in order to cope with the professional literature. The subject matter is fundamental for more advanced mathematical work.
(56990 views)
Book cover: Notes on Introductory Point-Set TopologyNotes on Introductory Point-Set Topology
by - Cornell University
These are lecture notes from the first part of an undergraduate course in 2005, covering just the most basic things. From the table of contents: Basic Point-Set Topology; Connectedness; Compactness; Quotient Spaces; Exercises.
(4751 views)
Book cover: Algebraic General TopologyAlgebraic General Topology
by - Mathematics21.org
I introduce the concepts of funcoids which generalize proximity spaces and reloids which generalize uniform spaces. Funcoid is generalized concept of proximity, the concept of reloid is cleared from superfluous details concept of uniformity.
(3872 views)
Book cover: A First Course in Topology: Continuity and DimensionA First Course in Topology: Continuity and Dimension
by - American Mathematical Society
A focused introduction to point-set topology, the fundamental group, and the beginnings of homology theory. The text is intended for advanced undergraduate students. It is suitable for students who have studied real analysis and linear algebra.
(13070 views)