Logo

Differential Equations of Mathematical Physics

Small book cover: Differential Equations of Mathematical Physics

Differential Equations of Mathematical Physics
by

Publisher: arXiv
Number of pages: 198

Description:
These lecture notes are aimed at mathematicians and physicists alike. It is not meant as an introductory course to PDEs, but rather gives an overview of how to view and solve differential equations that are common in physics. Among others, I cover Hamilton's equations, variations of the Schroedinger equation, the heat equation, the wave equation and Maxwell's equations.

Home page url

Download or read it online for free here:
Download link
(2.1MB, PDF)

Similar books

Book cover: Navier-Stokes Equations: On the Existence and the Search Method for Global SolutionsNavier-Stokes Equations: On the Existence and the Search Method for Global Solutions
by - MiC
In this book we formulate and prove the variational extremum principle for viscous incompressible and compressible fluid, from which principle follows that the Navier-Stokes equations represent the extremum conditions of a certain functional.
(8177 views)
Book cover: Invariance Theory, the Heat Equation and the Atiyah-Singer Index TheoremInvariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem
by - Publish or Perish Inc.
This book treats the Atiyah-Singer index theorem using the heat equation, which gives a local formula for the index of any elliptic complex. Heat equation methods are also used to discuss Lefschetz fixed point formulas and the Gauss-Bonnet theorem.
(8102 views)
Book cover: Introduction to Quantum IntegrabilityIntroduction to Quantum Integrability
by - arXiv
The authors review the basic concepts regarding quantum integrability. Special emphasis is given on the algebraic content of integrable models. A short review on quantum groups as well as the quantum inverse scattering method is also presented.
(7759 views)
Book cover: Tensor Techniques in Physics: a concise introductionTensor Techniques in Physics: a concise introduction
by - Learning Development Institute
Contents: Linear vector spaces; Elements of tensor algebra; The tensor calculus (Volume elements, tensor densities, and volume integrals); Applications in Relativity Theory (Elements of special relativity, Tensor form of Maxwell's equations).
(10913 views)