**Combinatorial Geometry with Application to Field Theory**

by Linfan Mao

**Publisher**: InfoQuest 2009**ISBN/ASIN**: 1599731002**ISBN-13**: 9781599731001**Number of pages**: 499

**Description**:

This monograph is motivated with surveying mathematics and physics by CC conjecture, i.e., a mathematical science can be reconstructed from or made by combinatorialization. Topics covered in this book include fundamental of mathematical combinatorics, differential Smarandache n-manifolds, combinatorial or differentiable manifolds and submanifolds, Lie multi-groups, combinatorial principal fiber bundles, gravitational field, quantum fields with their combinatorial generalization, also with discussions on fundamental questions in epistemology.

Download or read it online for free here:

**Download link**

(2.9MB, PDF)

## Similar books

**Synthetic Geometry of Manifolds**

by

**Anders Kock**-

**University of Aarhus**

This textbook can be used as a non-technical and geometric gateway to many aspects of differential geometry. The audience of the book is anybody with a reasonable mathematical maturity, who wants to learn some differential geometry.

(

**6121**views)

**Algebraic geometry and projective differential geometry**

by

**Joseph M. Landsberg**-

**arXiv**

Homogeneous varieties, Topology and consequences Projective differential invariants, Varieties with degenerate Gauss images, Dual varieties, Linear systems of bounded and constant rank, Secant and tangential varieties, and more.

(

**10595**views)

**Functional Differential Geometry**

by

**Gerald Jay Sussman, Jack Wisdom**-

**MIT**

Differential geometry is deceptively simple. It is surprisingly easy to get the right answer with informal symbol manipulation. We use computer programs to communicate a precise understanding of the computations in differential geometry.

(

**6907**views)

**Geometric Wave Equations**

by

**Stefan Waldmann**-

**arXiv**

We discuss the solution theory of geometric wave equations as they arise in Lorentzian geometry: for a normally hyperbolic differential operator the existence and uniqueness properties of Green functions and Green operators is discussed.

(

**5188**views)