**Combinatorial Geometry with Application to Field Theory**

by Linfan Mao

**Publisher**: InfoQuest 2009**ISBN/ASIN**: 1599731002**ISBN-13**: 9781599731001**Number of pages**: 499

**Description**:

This monograph is motivated with surveying mathematics and physics by CC conjecture, i.e., a mathematical science can be reconstructed from or made by combinatorialization. Topics covered in this book include fundamental of mathematical combinatorics, differential Smarandache n-manifolds, combinatorial or differentiable manifolds and submanifolds, Lie multi-groups, combinatorial principal fiber bundles, gravitational field, quantum fields with their combinatorial generalization, also with discussions on fundamental questions in epistemology.

Download or read it online for free here:

**Download link**

(2.9MB, PDF)

## Similar books

**Synthetic Geometry of Manifolds**

by

**Anders Kock**-

**University of Aarhus**

This textbook can be used as a non-technical and geometric gateway to many aspects of differential geometry. The audience of the book is anybody with a reasonable mathematical maturity, who wants to learn some differential geometry.

(

**7587**views)

**Notes on the Atiyah-Singer Index Theorem**

by

**Liviu I. Nicolaescu**-

**University of Notre Dame**

This is arguably one of the deepest and most beautiful results in modern geometry, and it is surely a must know for any geometer / topologist. It has to do with elliptic partial differential operators on a compact manifold.

(

**7158**views)

**Comparison Geometry**

by

**Karsten Grove, Peter Petersen**-

**Cambridge University Press**

This volume is an up-to-date panorama of Comparison Geometry, featuring surveys and new research. Surveys present classical and recent results, and often include complete proofs, in some cases involving a new and unified approach.

(

**8372**views)

**Triangles, Rotation, a Theorem and the Jackpot**

by

**Dave Auckly**-

**arXiv**

This paper introduced undergraduates to the Atiyah-Singer index theorem. It includes a statement of the theorem, an outline of the easy part of the heat equation proof. It includes counting lattice points and knot concordance as applications.

(

**6101**views)