Logo

Euclidean Random Matrices and Their Applications in Physics

Small book cover: Euclidean Random Matrices and Their Applications in Physics

Euclidean Random Matrices and Their Applications in Physics
by

Publisher: arXiv
Number of pages: 50

Description:
We review the state of the art of the theory of Euclidean random matrices, focusing on the density of their eigenvalues. Both Hermitian and non-Hermitian matrices are considered and links with simpler, standard random matrix ensembles are established. We discuss applications of Euclidean random matrices to contemporary problems in condensed matter physics, optics, and quantum chaos.

Home page url

Download or read it online for free here:
Download link
(6.8MB, PDF)

Similar books

Book cover: Clifford Algebra, Geometric Algebra, and ApplicationsClifford Algebra, Geometric Algebra, and Applications
by - arXiv
These are lecture notes for a course on the theory of Clifford algebras. The various applications include vector space and projective geometry, orthogonal maps and spinors, normed division algebras, as well as simplicial complexes and graph theory.
(15882 views)
Book cover: Navier-Stokes Equations: On the Existence and the Search Method for Global SolutionsNavier-Stokes Equations: On the Existence and the Search Method for Global Solutions
by - MiC
In this book we formulate and prove the variational extremum principle for viscous incompressible and compressible fluid, from which principle follows that the Navier-Stokes equations represent the extremum conditions of a certain functional.
(11277 views)
Book cover: Mirror SymmetryMirror Symmetry
by - American Mathematical Society
The book provides an introduction to the field of mirror symmetry from both a mathematical and physical perspective. After covering the relevant background material, the monograph is devoted to the proof of mirror symmetry from various viewpoints.
(14406 views)
Book cover: Lie Groups in PhysicsLie Groups in Physics
by - Utrecht University
Contents: Quantum mechanics and rotation invariance; The group of rotations in three dimensions; More about representations; Ladder operators; The group SU(2); Spin and angular distributions; Isospin; The Hydrogen Atom; The group SU(3); etc.
(15866 views)